Use d'Alembert's Solution to Solve the Wave Equation

mario99

Full Member
Joined
Aug 19, 2020
Messages
882
[math]\frac{\partial^2 y}{\partial t^2} = 81\frac{\partial^2 y}{\partial x^2}[/math]
[math]-\infty < x < \infty, \ \ \ t > 0[/math]
[math]y(x,0) = x^2[/math]
[math]\frac{\partial y}{\partial t}(x,0) = 3[/math]

I know how to solve this problem from scratch, but I don't know how to solve it by d'Alembert's solution.

The d'Alembert's solution is:​

[math]y(x,t) = \frac{1}{2}[f(x + ct) + f(x - ct)] + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s) \ ds[/math]
How to use this solution to solve the differential equation directly?
 
I think you can simply plug in [imath]c = \sqrt{81} = 9[/imath], [imath]f(x) = x^2[/imath], [imath]g(x) = 3[/imath].
 
This means that the solution is:

[imath]\displaystyle y(x,t) = \frac{1}{2}\left[f(x + 9t) + f(x - 9t)\right] + \frac{1}{2*9}\int_{x-9t}^{x+9t} 3 \ ds[/imath]


[imath]\displaystyle = \frac{1}{2}\left[(x + 9t)^2 + (x - 9t)^2\right] + \frac{3}{18}\left[(x+9t) - (x-9t)\right][/imath]


[imath]\displaystyle = \frac{1}{2}\left[x^2 + 18tx + 81t^2 + x^2 - 18tx + 81t^2\right] + \frac{1}{6}\left[x+9t - x + 9t\right][/imath]


[imath]\displaystyle = \frac{1}{2}\left[2x^2 + 162t^2\right] + \frac{1}{6}\left[18t\right][/imath]


[imath]\displaystyle = x^2 + 81t^2+ 3t[/imath]


Thank you MaxWong. Your help was so Epic.

🫡
 
Top