cos3x = 4cos3x - 3cosx
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 10, 2009 #2 Hello, shooterman! Better tidy up your typing . . . Prove: .\(\displaystyle \]cos3x \:=\: 4\cos^3\!x - 3\cos x\) Click to expand... \(\displaystyle \cos(3x) \;=\;\cos(2x+x)\) . . . . . .\(\displaystyle =\;\cos2x\cos x - \sin2x\sin x\) . . . . . .\(\displaystyle =\;(2\cos^2\!x - 1)\cos x - (2\sin x\cos x)\sin x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\sin^2\!x\cos x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2(1 - \cos^2\!x)\cos x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\cos x + 2\cos^3\!x\) . . . . . .\(\displaystyle =\;4\cos^3\!x - 3\cos x\)
Hello, shooterman! Better tidy up your typing . . . Prove: .\(\displaystyle \]cos3x \:=\: 4\cos^3\!x - 3\cos x\) Click to expand... \(\displaystyle \cos(3x) \;=\;\cos(2x+x)\) . . . . . .\(\displaystyle =\;\cos2x\cos x - \sin2x\sin x\) . . . . . .\(\displaystyle =\;(2\cos^2\!x - 1)\cos x - (2\sin x\cos x)\sin x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\sin^2\!x\cos x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2(1 - \cos^2\!x)\cos x\) . . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\cos x + 2\cos^3\!x\) . . . . . .\(\displaystyle =\;4\cos^3\!x - 3\cos x\)
S shooterman Junior Member Joined Aug 20, 2009 Messages 57 Dec 10, 2009 #3 Never noticed the problem could be verified working backwards starting with the difference and sum identities thanks.
Never noticed the problem could be verified working backwards starting with the difference and sum identities thanks.