Verify equation is an identity

Hello, shooterman!

Better tidy up your typing . . .


Prove: .\(\displaystyle \]cos3x \:=\: 4\cos^3\!x - 3\cos x\)

\(\displaystyle \cos(3x) \;=\;\cos(2x+x)\)

. . . . . .\(\displaystyle =\;\cos2x\cos x - \sin2x\sin x\)

. . . . . .\(\displaystyle =\;(2\cos^2\!x - 1)\cos x - (2\sin x\cos x)\sin x\)

. . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\sin^2\!x\cos x\)

. . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2(1 - \cos^2\!x)\cos x\)

. . . . . .\(\displaystyle =\;2\cos^3\!x - \cos x - 2\cos x + 2\cos^3\!x\)

. . . . . .\(\displaystyle =\;4\cos^3\!x - 3\cos x\)

 
Never noticed the problem could be verified working backwards starting with the difference and sum identities thanks.
 
Top