But, I am still stuck on this one. Your solution is not one of my answer options. I have tried to FOIL, but that turned into a big mess.
I think the correct solution is -1+sin(x)/-1-sin(x). . . . calc1, that's not correct anyway, because you're missing grouping symbols
around the numerator and denominator.
I solved to a similar solution with different signs, but I haven’t been able to do that again. My similar solution was wrong anyway.
My other choices are: 1 + 2tan2(x), which doesn't smell right to me, and tan2(x) + sec2(x), but I don't think the middle sign would change.
Thanks.
HallsofIvy said:
tan(x)= sin(x)/cos(x) and sec(x)= 1/cos(x) so tan(x)- sec(x)= (sin(x)- 1)/cos(x) and so [FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]s[/FONT][FONT=MathJax_Math]i[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]/[/FONT][FONT=MathJax_Math]c[/FONT][FONT=MathJax_Math]o[/FONT][FONT=MathJax_Math]s[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT]
calc1,
you stated that you want it simplified as much as possible. Then, I am looking to get the degrees of the trig functions
cancelled down to the first degree, if possible. Also, I am trying to not have any leading negative signs.
HallofIvy's last expression:
\(\displaystyle \dfrac{(sin(x) - 1)^2}{cos^2(x)}\)
It equals
\(\displaystyle \dfrac{(sin(x) - 1)(sin(x) - 1)}{1 - sin^2(x)}\)
** \(\displaystyle = \)
\(\displaystyle \dfrac{(sin(x) - 1)(sin(x) - 1)}{(1 - sin(x))(1 + sin(x))} \ = \)
\(\displaystyle \dfrac{(-1)(1 - sin(x))(sin(x) - 1)}{(1 - sin(x))(1 + sin(x))} \ = \)
\(\displaystyle \dfrac{(-1)(sin(x) - 1)}{(1)(1 + sin(x))} \ =\)
\(\displaystyle \boxed{\dfrac{ \ 1 - sin(x) \ }{ \ 1 + sin(x) \ }}\)
- - - - - -- - - - - - - - -- - - - - - - - - - - - -
** This stems from the identity \(\displaystyle sin^2(x) + cos^2(x) = 1\)
\(\displaystyle sin^2(x) + cos^2(x) = 1 \ \ \implies \)
\(\displaystyle cos^2(x) = 1 - sin^2(x)\)