Hi! I have a question..
Given the Bernoulli equation:
\(\displaystyle 2xyy'+(1+x)y^2=e^{2x} \), \(\displaystyle x>0 \)
\(\displaystyle lim_{x -> 0^{+}} y(x) <\infty \)
The transformation is \(\displaystyle u=y^{2} \).
So, \(\displaystyle u'+(\frac{1}{x}+1)u=\frac{e^{2x}}{x}\).
How can I find the initial value \(\displaystyle u(1)\) so that \(\displaystyle lim_{x -> 0^{+}} u(x) <\infty \) ??
Given the Bernoulli equation:
\(\displaystyle 2xyy'+(1+x)y^2=e^{2x} \), \(\displaystyle x>0 \)
\(\displaystyle lim_{x -> 0^{+}} y(x) <\infty \)
The transformation is \(\displaystyle u=y^{2} \).
So, \(\displaystyle u'+(\frac{1}{x}+1)u=\frac{e^{2x}}{x}\).
How can I find the initial value \(\displaystyle u(1)\) so that \(\displaystyle lim_{x -> 0^{+}} u(x) <\infty \) ??
Last edited: