This is so cleverLet me check:
[MATH]S_n=\frac{3}{2}\left(\frac{1}{3}+\sum_{r=2}^{n}\left(\frac{1}{2r+1}\right)-\sum_{r=2}^{n}\left(\frac{1}{2r+1}\right)-\frac{1}{2n+3}\right)[/MATH]
[MATH]S_n=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{2n+3}\right)[/MATH]
[MATH]S_n=\frac{3}{2}\left(\frac{2n}{3(2n+3)}\right)=\frac{n}{2n+3}\quad\checkmark[/MATH]
Good work!![]()