Derivatives of Trigonometric Functions

eutas1

Junior Member
Joined
Apr 8, 2021
Messages
165
Please refer to my attachment - I'm not sure why this method does not work...

Thank you!
 

Attachments

  • 777.JPG
    777.JPG
    61.2 KB · Views: 3
[MATH]\frac{d}{dx}(e^{2x} \cdot e^{\sin(4x)})[/MATH]
requires use of the product rule

[MATH]e^{2x} \cdot e^{\sin(4x)} \cdot 4\cos(4x) + e^{\sin(4x)} \cdot 2e^{2x} = 2e^{2x} \cdot e^{\sin(4x)}[2\cos(4x)+1][/MATH]
 
[MATH]\frac{d}{dx}(e^{2x} \cdot e^{\sin(4x)})[/MATH]
requires use of the product rule

[MATH]e^{2x} \cdot e^{\sin(4x)} \cdot 4\cos(4x) + e^{\sin(4x)} \cdot 2e^{2x} = 2e^{2x} \cdot e^{\sin(4x)}[2\cos(4x)+1][/MATH]

Ah I see! However, I still don't get exactly the same answer - please refer to the attachment.
 

Attachments

  • 111.jpg
    111.jpg
    32 KB · Views: 4
they are the same expression...

note that [MATH]2e^{2x} \cdot e^{\sin(4x)} = 2e^{2x+\sin(4x)}[/MATH]
 
Top