t-results and trig identities help!

[MATH]\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{2\sin \theta \cos \theta}{\cos^{2} \theta - \sin^2 \theta} = \frac{2\tan \theta}{1 - \tan^2 \theta}[/MATH]

[MATH]\tan \theta = \frac{\sin \theta}{\cos \theta}[/MATH]

[MATH]\sin \theta = \frac{2\tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}[/MATH]

[MATH]\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}[/MATH]

What can you do more with these expressions?
 
[MATH]\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{2\sin \theta \cos \theta}{\cos^{2} \theta - \sin^2 \theta} = \frac{2\tan \theta}{1 - \tan^2 \theta}[/MATH]

[MATH]\tan \theta = \frac{\sin \theta}{\cos \theta}[/MATH]

[MATH]\sin \theta = \frac{2\tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}[/MATH]

[MATH]\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}[/MATH]

What can you do more with these expressions?
hi would it just end up being 2t/1-t^2
 
\(\displaystyle tan 2A = \frac{2 tan A}{1-tan^2 A}\)

It follows that:

\(\displaystyle tan A = \frac{2 tan(A/2)}{1-tan^2 (A/2)}=\frac{2t}{1-t^2} \)

Sub the second one into the first one and tidy it up.
 
tan(2x) = sin(2x) / cos(2x) = 2*tan(x) / [1 - tan^2(x)]

tan(x) = 2 * tan(x/2) / [1 - tan^2(x/2)] = 2*t/(1-t^2)

tan(2x) = [ 4*t/(1- t^2)] / [ 1 - {2*t/(1-t^2)}^2] ...... simplify....

Same as response above ... different formats ......
 
Top