I believe you're referring to finding delta in terms of epsilon in the scratch work.
[math]|f(x)-L|<\epsilon\\ \left|\frac{x^2+1}{x^2+4}-\frac{2}{5}\right|=\left|\frac{3(x-1)(x+1)}{5(x^2+4)}\right|=|x-1|\cdot \left|\frac{3}{5}\right|\cdot\frac{|x+1|}{x^2+4}<\epsilon[/math].
Put a constraint on [imath]\delta[/imath]. Suppose [imath]\delta <1 [/imath], then [imath]|x-1|<1 \implies[/imath][imath]-1< x-1<1\implies 0< x < 2[/imath].
Let's examine [imath]\frac{|x+1|}{x^2+4}[/imath]. The largest numerator occurs when [imath]x=2[/imath] i.e. [imath]2+1=3[/imath]. On the other hand, the smallest the denominator can be is when [imath]x=0[/imath] i.e. [imath]0^2+4=4[/imath]. So,
[math]\frac{|x+1|}{x^2+4}\le\frac{3}{4}[/math]It follows that:
[math]|x-1|\cdot \left|\frac{3}{5}\right|\cdot\frac{|x+1|}{x^2+4} \le|x-1|\cdot \left|\frac{3}{5}\right|\cdot\frac{3}{4}=\frac{9}{4}|x-1|<\epsilon[/math].
Therefore, we choose [math]\delta<\min\left\{1,\frac{4\epsilon}{9}\right\}\quad \text{or}\quad \delta=\frac{1}{2}\left\{1,\frac{4\epsilon}{9}\right\}[/math]If someone can confirm my argument.