moment of inertia

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
Find the moment of inertia \(\displaystyle I\) of a uniform hollow cylinder of inner radius \(\displaystyle R_1\), outer radius \(\displaystyle R_2\), and mass \(\displaystyle M\) if the rotation axis is through its center.

Hint: \(\displaystyle I = \int R^2 \ dm\)
 
Hint: \(\displaystyle I = \int R^2 \ dm\)
Using the hint. I will rotate around the \(\displaystyle z\) axis.

\(\displaystyle I_z = \int R^2 \ dm = \int R^2 \rho \ dV\)

If I take the volume of a thin cylindrical shell, I get:

\(\displaystyle I_z = \int R^2 \rho \ dV = \int R^2 \rho \ 2\pi Rh \ dR = 2\pi \rho h\int R^3 \ dR\)

I am ready to integrate😍

\(\displaystyle I_z = 2\pi \rho h\int_{R_1}^{R_2} R^3 \ dR = 2\pi \rho h \frac{R^4}{4}\bigg|_{R_1}^{R_2} = 2\pi \rho h\left(\frac{R^4_2}{4} - \frac{R^4_1}{4}\right)\)


\(\displaystyle = \pi \rho h\left(\frac{R^4_2 - R^4_1}{2}\right) = \pi \rho h\frac{\left(R^2_2 + R^2_1\right)\left(R^4_2 - R^2_1\right)}{2}\)

We know that \(\displaystyle \rho\) is the volume density, then

\(\displaystyle \rho = \frac{M}{V} = \frac{M}{h\pi\left(R^2_2 - R^2_1\right)}\)

This gives:

\(\displaystyle I_z = \pi \frac{M}{V} h\frac{\left(R^2_2 + R^2_1\right)\left(R^4_2 - R^2_1\right)}{2} = \pi \frac{M}{h\pi\left(R^2_2 - R^2_1\right)} h\frac{\left(R^2_2 + R^2_1\right)\left(R^4_2 - R^2_1\right)}{2}\)

With a little simplification, finally we get🤩

\(\displaystyle I_z = \textcolor{blue}{\frac{1}{2}M\left(R^2_2 + R^2_1\right)}\)
 
Top