silverlining326
New member
- Joined
- Jan 25, 2006
- Messages
- 16
^3√-5x^4
^3√40xy^6
and
^5√64x^6
thanks
^3√40xy^6
and
^5√64x^6
thanks
pka said:Is your problem \(\displaystyle \L
\frac{{\sqrt[3]{{ - 5x^4 }}}}{{\sqrt[3]{{40xy^6 }}}}\quad \mbox\)?
Please learn to use grouping symbols!
We have: \(\displaystyle \L\:\sqrt[3]{\frac{-5x^4}{40xy^6}} \;=\;\sqrt[3]{\frac{-x^3}{8y^6}} \;=\;\frac{\sqrt[3]{-x^3}}{\sqrt[3]{8y^6}} \;=\;\frac{-x}{2y^2}\)\(\displaystyle \L\frac{\sqrt[3]{-5x^4}}{\sqrt[3]{40xy^6}}\)
We have: \(\displaystyle \L\:\sqrt[5]{32\,\cdot\,2\,\cdot\,x^5\,\cdot\,x} \:=\:\sqrt[5]{2^5\cdot x^5\,\cdot\,2x} \;=\;\sqrt[5]{2^5\cdot x^5}\,\cdot\,\sqrt[5]{2x} \;= \;2x\,\sqrt[5]{2x}\)\(\displaystyle \L\sqrt[5]{64x^6}\)