logistic_guy
Senior Member
- Joined
- Apr 17, 2024
- Messages
- 2,214
Let
\(\displaystyle x[n] = \delta[n] + 2\delta[n - 1] - \delta[n - 3] \ \) and \(\displaystyle \ h[n] = 2\delta[n + 1] + 2\delta[n - 1]\).
Compute and plot each of the following convolutions:
\(\displaystyle \bold{(a)} \ y_1[n] = x[n] \ * \ h[n]\)
\(\displaystyle \bold{(b)} \ y_2[n] = x[n + 2] \ * \ h[n]\)
\(\displaystyle \bold{(c)} \ y_3[n] = x[n] \ * \ h[n + 2]\)
\(\displaystyle x[n] = \delta[n] + 2\delta[n - 1] - \delta[n - 3] \ \) and \(\displaystyle \ h[n] = 2\delta[n + 1] + 2\delta[n - 1]\).
Compute and plot each of the following convolutions:
\(\displaystyle \bold{(a)} \ y_1[n] = x[n] \ * \ h[n]\)
\(\displaystyle \bold{(b)} \ y_2[n] = x[n + 2] \ * \ h[n]\)
\(\displaystyle \bold{(c)} \ y_3[n] = x[n] \ * \ h[n + 2]\)