I am having difficulty in this manipulation:
Illustration 6:
. . . . .Solve \(\displaystyle \dfrac{dy}{dx}\, =\, \dfrac{x \, \sin(x)}{2\, e^y\, \sinh(y)}\)
Solution:
. . . . .Rewrite the equation as:
. . . . . . . . . .. .\(\displaystyle x\, \sin(x)\, dx\, =\, 2\, e^y\, \sinh(y)\, dy\)
. . . . . . . . . .\(\displaystyle \int\, x\, \sin(x)\, dx\, =\, 2\, \int\, e^y\, \sinh(y)\, dy\, +\, c\)
. . . . . . . . . . . . . . . . . . ..\(\displaystyle =\, 2\, \int\, e^y\, \dfrac{\left(e^y\, -\, e^{-y}\right)}{2}\, dy\, +\, c\)
. . . . . . . . . . . . . . . . . . ..\(\displaystyle =\, \int\, \left(e^{2y}\, -\, 1\right)\, dy\, +\, c\)
This is a differential equation problem, my doubt here is i am not able to understand how did they eliminate the term 'sinh y' .
Is there some sort of formula that I am missing????? please help thanks in advance
Illustration 6:
. . . . .Solve \(\displaystyle \dfrac{dy}{dx}\, =\, \dfrac{x \, \sin(x)}{2\, e^y\, \sinh(y)}\)
Solution:
. . . . .Rewrite the equation as:
. . . . . . . . . .. .\(\displaystyle x\, \sin(x)\, dx\, =\, 2\, e^y\, \sinh(y)\, dy\)
. . . . . . . . . .\(\displaystyle \int\, x\, \sin(x)\, dx\, =\, 2\, \int\, e^y\, \sinh(y)\, dy\, +\, c\)
. . . . . . . . . . . . . . . . . . ..\(\displaystyle =\, 2\, \int\, e^y\, \dfrac{\left(e^y\, -\, e^{-y}\right)}{2}\, dy\, +\, c\)
. . . . . . . . . . . . . . . . . . ..\(\displaystyle =\, \int\, \left(e^{2y}\, -\, 1\right)\, dy\, +\, c\)
This is a differential equation problem, my doubt here is i am not able to understand how did they eliminate the term 'sinh y' .
Is there some sort of formula that I am missing????? please help thanks in advance
Last edited by a moderator: