Let [MATH]D[/MATH] be a region given as the set of [MATH](x,y)[/MATH] with [MATH]-\phi(x)\leq y\leq\phi(x)[/MATH] and [MATH]a\leq x\leq b[/MATH], where [MATH]\phi[/MATH] is a nonnegative continuous function on the interval [MATH][a,b][/MATH]. Let [MATH]f(x,y)[/MATH] be a function on [MATH]D[/MATH] such that [MATH]f(x,y)=-f(x,-y)[/MATH] for all [MATH](x,y)\in D[/MATH]. Argue that [MATH]\iint_D f(x,y) \,dA = 0 [/MATH].
I have [MATH]\int_{a}^{b}\int_{-\phi}^{\phi}f(x,y) dydx[/MATH], and I start by computing the inner integral first (in terms of y).
I split it into two regions: [MATH]\int_{-\phi}^{0}f(x,y)dy + \int_{0}^{\phi}f(x,y)dy[/MATH]I do the following substitutions for the first integral: [MATH]y\Rightarrow-u[/MATH], [MATH]dy\Rightarrow-du[/MATH], [MATH]-\phi\Rightarrow\phi[/MATH], and [MATH]0\Rightarrow0[/MATH]This leads me to the following computations: [MATH]\int_{\phi}^{0}-f(x,-u)du + \int_{0}^{\phi}f(x,y)dy = -\int_{0}^{\phi}f(x,u)du + \int_{0}^{\phi}f(x,y)dy[/MATH].
I have no idea what do from here. I assume I can just resubstitute [MATH]y\Rightarrow-u[/MATH] and [MATH]dy\Rightarrow-du[/MATH] or do a similar substitution, but I'm confused as to what happens with the upper bound of the first integral [MATH]\phi[/MATH] if I do so.
Any and all help is appreciated.
I have [MATH]\int_{a}^{b}\int_{-\phi}^{\phi}f(x,y) dydx[/MATH], and I start by computing the inner integral first (in terms of y).
I split it into two regions: [MATH]\int_{-\phi}^{0}f(x,y)dy + \int_{0}^{\phi}f(x,y)dy[/MATH]I do the following substitutions for the first integral: [MATH]y\Rightarrow-u[/MATH], [MATH]dy\Rightarrow-du[/MATH], [MATH]-\phi\Rightarrow\phi[/MATH], and [MATH]0\Rightarrow0[/MATH]This leads me to the following computations: [MATH]\int_{\phi}^{0}-f(x,-u)du + \int_{0}^{\phi}f(x,y)dy = -\int_{0}^{\phi}f(x,u)du + \int_{0}^{\phi}f(x,y)dy[/MATH].
I have no idea what do from here. I assume I can just resubstitute [MATH]y\Rightarrow-u[/MATH] and [MATH]dy\Rightarrow-du[/MATH] or do a similar substitution, but I'm confused as to what happens with the upper bound of the first integral [MATH]\phi[/MATH] if I do so.
Any and all help is appreciated.