The third loop gives us:
\(\displaystyle v_o = 10000(-40I_o)\)
Now I will substitute equation \(\displaystyle 1\) in equation \(\displaystyle 2\).
\(\displaystyle -\frac{v_o}{1000} + 100I_1 - 2100I_o = 0\)
\(\displaystyle -\frac{v_o}{1000} + 100\bigg[\frac{v_s + 100I_o}{300}\bigg] - 2100I_o = 0\)
\(\displaystyle -\frac{3v_o}{1000} + v_s + 100I_o - 6300I_o = 0\)
\(\displaystyle -\frac{3v_o}{1000} + v_s - 6200I_o = 0\)
\(\displaystyle -3v_o + 1000v_s - 6200000I_o = 0\)
I will substitute equation \(\displaystyle 3\) in this equation above.
\(\displaystyle -3v_o + 1000v_s - 6200000\bigg[-\frac{v_o}{400000}\bigg] = 0\)
\(\displaystyle -3v_o + 1000v_s - 62\bigg[-\frac{v_o}{4}\bigg] = 0\)
\(\displaystyle -3v_o + 1000v_s - 31\bigg[-\frac{v_o}{2}\bigg] = 0\)
\(\displaystyle -6v_o + 2000v_s + 31v_o = 0\)
\(\displaystyle 2000v_s + 25v_o = 0\)
\(\displaystyle 25v_o = -2000v_s\)
Determine the gain \(\displaystyle v_o/v_s\)
\(\displaystyle \frac{v_o}{v_s} = -\frac{2000}{25} = \textcolor{blue}{-80}\)