We continue like pros.
\(\displaystyle \frac{\partial f}{\partial x} = M = xy^4\)
\(\displaystyle \int \frac{\partial f}{\partial x} \ dx = \int xy^4 \ dx\)
\(\displaystyle f(x,y) = \frac{x^2y^4}{2} + g(y)\)
\(\displaystyle \frac{\partial f}{\partial y} = 2x^2y^3 + g'(y)\)
\(\displaystyle \frac{\partial f}{\partial y} = N = 2x^2y^3 + g'(y)\)
\(\displaystyle 2x^2y^3 + 3y^5 - 20y^3 = 2x^2y^3 + g'(y)\)
\(\displaystyle 3y^5 - 20y^3 = g'(y)\)
\(\displaystyle \int (3y^5 - 20y^3) \ dy = \int g'(y) \ dy\)
\(\displaystyle \frac{y^6}{2} - 5y^4 = g(y)\)
This gives:
\(\displaystyle f(x,y) = \frac{x^2y^4}{2} + \frac{y^6}{2} - 5y^4\)
Then the general solution to the differential equation is:
\(\displaystyle \frac{x^2y^4}{2} + \frac{y^6}{2} - 5y^4 = D\)
Or
\(\displaystyle x^2y^4 + y^6 - 10y^4 = C\)
Or
\(\displaystyle (x^2 - 10)y^4 + y^6 = C\)