Question 10's solution:
. . .\(\displaystyle 2^{x+1}\, +\, 2^{x-2}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle 2^x\, \cdot\, 2\, +\, \dfrac{2^x}{2^2}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \dfrac{\left(4\, \cdot\, 2^x\, \cdot\, 2\right)\, +\, 2^x}{4}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \dfrac{\left(8\, \cdot\, 2^x\right)\, +\, 2^x}{4}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
Solution from there...
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
. . .\(\displaystyle 9\, \cdot\, 2^x\, =\, 18\)
. . .\(\displaystyle \dfrac{9\, \cdot\, 2^x}{9}\, =\, \dfrac{18}{9}\)
. . .\(\displaystyle 2^x\, =\, 2\)
. . .\(\displaystyle x\, =\, 1\)
Question: How to go from here:
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
...to here?
. . .\(\displaystyle 9\, \cdot\, 2^x\, =\, 18\)
. . .\(\displaystyle 2^{x+1}\, +\, 2^{x-2}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle 2^x\, \cdot\, 2\, +\, \dfrac{2^x}{2^2}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \dfrac{\left(4\, \cdot\, 2^x\, \cdot\, 2\right)\, +\, 2^x}{4}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \dfrac{\left(8\, \cdot\, 2^x\right)\, +\, 2^x}{4}\, =\, \dfrac{9}{2}\)
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
Solution from there...
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
. . .\(\displaystyle 9\, \cdot\, 2^x\, =\, 18\)
. . .\(\displaystyle \dfrac{9\, \cdot\, 2^x}{9}\, =\, \dfrac{18}{9}\)
. . .\(\displaystyle 2^x\, =\, 2\)
. . .\(\displaystyle x\, =\, 1\)
Question: How to go from here:
. . .\(\displaystyle \left(8\, \cdot\, 2^x\right)\, +\, 2^x\, =\, 18\)
...to here?
. . .\(\displaystyle 9\, \cdot\, 2^x\, =\, 18\)
Attachments
Last edited by a moderator: