This has taken me an unconscionable length of time. My only excuse is that I have had other things to do.
[MATH]\text {Lemma I: } u \in \mathbb N_0, \ v \in \mathbb N_0 \text { and } 0 \le v \le u \implies[/MATH]
[MATH]\dbinom{u - v}{v} + \dbinom{u - v}{v + 1} = \dbinom{u + 1 - v}{v + 1}.[/MATH]
Proof
[MATH]0 \le v \le u \implies 0 \le v < \dfrac{u}{2},\ 0 \le v = \dfrac{u}{2}, \text { or } v > \dfrac{u}{2} \ge 0.[/MATH]
[MATH]\text {Case A: } v > \dfrac{u}{2}.[/MATH]
[MATH]\therefore 2v > u \implies v > u - v,\ v + 1 > u - v, \text { and } v + 1 > u + 1 - v.[/MATH]
[MATH]\therefore \dbinom{u - v}{v} + \dbinom{u - v}{v + 1} = 0 + 0 = 0 = \dbinom{u + 1 - v}{v + 1}.[/MATH]
[MATH]\text {Case B: } v = \dfrac{u}{2}.[/MATH]
[MATH]\therefore 2v = u \implies v = u - v,\ v + 1 = u + 1 - v, \text { and } v + 1 > u - v = v.[/MATH]
[MATH]\therefore \dbinom{u - v}{v} + \dbinom{u - v}{v + 1} = \dbinom{v}{v} + 0 =[/MATH]
[MATH]1 + 0 = 1 = \dbinom{v + 1}{v + 1} = \dbinom{u + 1 - v}{v + 1} .[/MATH]
[MATH]\text {Case C: } v < \dfrac{u}{2}.[/MATH]
[MATH]\therefore 2v < u \implies v < u - v,\ v + 1 \le u - v, \text { and } v + 1 < u + 1 - v.[/MATH]
[MATH]\dbinom{u - v}{v} = \dfrac{(u - v)!}{v! * (u - 2v)!} = \dfrac{(v + 1) * (u - v)!}{(v + 1)! * (u - 2v)!}.[/MATH]
[MATH]\dbinom{u - v}{v + 1} = \dfrac{(u - v)!}{(v + 1)! * (u - 2v - 1)!} = \dfrac{(u - 2v) * (u - v)!}{(v + 1)! * (u - 2v)!}.[/MATH]
[MATH]\dbinom{u + 1 - v}{v + 1} = \dfrac{(u + 1 - v)!}{(v + 1)! * (u - 2v)!}.[/MATH]
[MATH]\dbinom{u - v}{v} + \dbinom{u - v}{v + 1} = \dfrac{(v + 1) * (u - v)!}{(v + 1)! * (u - 2v)!} + \dfrac{(u - 2v) * (u - v)!}{(v + 1)! * (u - 2v)!} =[/MATH]
[MATH]\dfrac{(v + 1 + u - 2v) * (u - v)!}{(v + 1)! * (u - 2v)!} = \dfrac{(u + 1 - v) * (u - v)!}{(v + 1)! * (u - 2v)!} =[/MATH]
[MATH]\dfrac{(u + 1 - v)!}{(v + 1)! * (u - 2v)!} = \dbinom{u + 1 - v}{v + 1}.[/MATH]
[MATH]\text {Thus, in all three cases } \dbinom{u - v}{v} + \dbinom{u - v}{v + 1} = \dbinom{u + 1 - v}{v + 1} \text { Q.E.D.}[/MATH]
[MATH]\text {Lemma II: }\left ( \sum_{v=0}^u \dbinom{u - v}{v} \right ) + \left ( \sum_{v=0}^{u+1} \dbinom{u + 1 - v}{v} \right ) =\sum_{v=0}^{u+2} \dbinom{u + 2 - v}{v}.[/MATH]
Proof
[MATH]\sum_{v=0}^{u+1} \dbinom{u + 1 - v}{v} = \dbinom{u + 1 - 0}{0} + \sum_{v=1}^{u+1} \dbinom{u + 1 - v}{v} = 1 + \sum_{v=1}^{u+1} \dbinom{u + 1 - v}{v}.[/MATH]
[MATH]w + 1 = v \implies w = 0 \text { if } v = 1 \text { and } u + 1 - v = u + 1 - (w + 1) = u - w \implies[/MATH]
[MATH]\sum_{v=1}^{u+1} \dbinom{u + 1 - v}{v} = \sum_{w=0}^u \dbinom{u - w}{w + 1}.[/MATH]
[MATH]\sum_{v=0}^u \dbinom{u - v}{v} = \sum_{w=0}^u \dbinom{u - w}{w}.[/MATH]
[MATH]\left ( \sum_{v=0}^u \dbinom{u - v}{v} \right ) + \left ( \sum_{v=0}^{u+1} \dbinom{u + 1 - v}{v} \right ) =[/MATH]
[MATH]\left ( \sum_{w=0}^u \dbinom{u - w}{w} \right ) + 1 + \left ( \sum_{w=0}^u \dbinom{u - w}{w + 1} \right ) =[/MATH]
[MATH]1 + \left ( \sum_{w=0}^u \dbinom{u - w}{w} \right ) + 1 + \left ( \sum_{w=0}^u \dbinom{u - w}{w + 1} \right ) =[/MATH]
[MATH]1 + \left ( \sum_{w=0}^u \dbinom{u - w}{w} + \dbinom{u - w}{w + 1} \right )=[/MATH]
[MATH]1 + \sum_{w=0}^u \dbinom{u + 1 - w}{w + 1} \text { by Lemma I.}[/MATH]
[MATH]w + 1 = v \implies u + 1 - w = u + 1 - (v - 1) = u + 2 - v \implies[/MATH]
[MATH]1 + \sum_{w=0}^u \dbinom{u + 1 - w}{w + 1} = 1 + \sum_{v=1}^{u+1} \dbinom{u + 2 - v}{v}.[/MATH]
[MATH]\therefore \left ( \sum_{v=0}^u \dbinom{u - v}{v} \right ) + \left ( \sum_{v=0}^{u+1} \dbinom{u + 1 - v}{v} \right ) =[/MATH]
[MATH]1 + \sum_{v=1}^{u+1} \dbinom{u + 2 - v}{v} = 1 + \left ( \sum_{v=1}^{u+1} \dbinom{u + 2 - v}{v} \right ) + 0 =[/MATH]
[MATH]1 + \left ( \sum_{v=1}^{u+1} \dbinom{u + 2 - v}{v} \right ) + \dbinom{u + 2 - (u + 2)}{u + 2} =[/MATH]
[MATH]1 + \sum_{v=1}^{u+2} \dbinom{u + 2 - v}{v} = \dbinom{u + 2 - 0}{0} + \sum_{v=1}^{u+2} \dbinom{u + 2 - v}{v} =[/MATH]
[MATH]\sum_{v=0}^{u+2} \dbinom{u + 2 - v}{v}. \text{ In short,}[/MATH]
[MATH]\left ( \sum_{v=0}^u \dbinom{u - v}{v} \right ) + \left ( \sum_{v=0}^{u+1} \dbinom{u + 1 - v}{v} \right ) =\sum_{v=0}^{u+2} \dbinom{u + 2 - v}{v} \text { Q.E.D.}[/MATH]
And now, at last, we are ready for our induction proof, which, as a result of Lemma 2, has become quite straight forward..
We define the Fibonacci numbers as:
[MATH]F_0 = 0,\ F_1 = 1, \text { and } F_{n+2} = F_n + F_{n+1} \text { if } n \ge 2.[/MATH]
The theorem is:
[MATH]\text {Theorem: } n \in N_0 \implies F_{n+1} = \sum_{k=0}^n \dbinom{n- k}{k}.[/MATH]
Proof
[MATH]F_{0+1} = F_1 = 1 = \dbinom{0}{0} = \dbinom{0 - 0}{0} = \sum_{k=0}^0 \dbinom{0 - k}{k}.[/MATH]
[MATH]F_{0 + 2} = F_2 = F_0 + F_1 = 0 + 1 = 1 + 0.[/MATH]
[MATH]\therefore F_{0+2} = \dbinom{1}{0} + 0 = \dbinom{1 - 0}{0} + \dbinom{1 - 1}{1} = \sum_{k=0}^{j+1} \dbinom{j + 1 - k}{k}.[/MATH]
[MATH]\therefore \exists \text { a non-empty set } \mathbb J \text { such that any } j \in \mathbb J \implies [/MATH]
[MATH]j \in \mathbb N_0, \ F_{j+1} = \sum_{k=0}^j \dbinom{j - k}{k}, \text { and } F_{j+2} = \sum_{k=0}^{j+1} \dbinom{j + 1 - k}{k}.[/MATH]
[MATH]\text {For induction, we must show first that } F_{(j+1)+1} = \sum_{k=0}^{j+1} \dbinom{(j + 1) - k}{k}.[/MATH]
[MATH]F_{(j+1)+1} = F_{j+2} = \sum_{k=0}^{j+1} \dbinom{j + 1 - k}{k} = \sum_{k=0}^{j+1} \dbinom{(j + 1) - k}{k}.[/MATH]
[MATH]\text {That now done, we must next show that } F_{(j+1)+2} = \sum_{k=0}^{(j+1)+1} \dbinom{(j + 1) + 1 - k}{k}.[/MATH]
[MATH](j + 1) + 2 = j + 3 \ge 2 \ \because \ j \in \mathbb N_0.[/MATH]
[MATH]\therefore F_{(j+1)+2} = F_{j+1} + F_{(j+1)+1} = F_{j+1} + F_{j+2} \implies[/MATH]
[MATH]F_{(j+1)+2} = \left ( \sum_{k=0}^j \dbinom{j - k}{k} \right ) + \left ( \sum_{k=0}^{j+1} \dbinom{j +1 - k}{k} \right ) \implies[/MATH]
[MATH]F_{(j+1)+2} = \sum_{k=0}^{j+2} \dbinom{j + 2 - k}{k} \text { by Lemma II.}[/MATH]
[MATH]\therefore F_{(j+1)+2} = \sum_{k=0}^{(j+1) + } \dbinom{(j + 1) + 1 - k}{k}[/MATH]
[MATH]\text {By induction, } n \in \mathbb N_0 \implies F_{n+1} = \sum_{k=0}^n \dbinom{n - k}{k} \text { and } F_{n+2} = \sum_{k=0}^{n+1} \dbinom{n + 1 - k}{k}.[/MATH]
[MATH]\therefore n \in \mathbb N_0 \implies F_{n+1} = \sum_{k=0}^n \dbinom{n - k}{k} \text { Q. E. D}[/MATH]