Please help! cos2theta = -3/4 and 2theta terminates in quadrant 2 Find: tantheta and sectheta
A aplubin New member Joined Apr 10, 2007 Messages 5 Apr 11, 2007 #1 Please help! cos2theta = -3/4 and 2theta terminates in quadrant 2 Find: tantheta and sectheta
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 Apr 11, 2007 #2 cos(2t) = -3/4 cos(2t) = 2cos<sup>2</sup>t - 1 2cos<sup>2</sup>t - 1 = -3/4 2cos<sup>2</sup>t = 1/4 cos<sup>2</sup>t = 1/8 since pi < 2t < pi/2, pi/2 < t < pi/4 ... so theta (t) is a quad I angle. cost = 1/[2sqrt(2)] ... sect = 2sqrt(2) tan<sup>2</sup>t + 1 = sec<sup>2</sup>t tan<sup>2</sup>t + 1 = 8 tant = sqrt(7)
cos(2t) = -3/4 cos(2t) = 2cos<sup>2</sup>t - 1 2cos<sup>2</sup>t - 1 = -3/4 2cos<sup>2</sup>t = 1/4 cos<sup>2</sup>t = 1/8 since pi < 2t < pi/2, pi/2 < t < pi/4 ... so theta (t) is a quad I angle. cost = 1/[2sqrt(2)] ... sect = 2sqrt(2) tan<sup>2</sup>t + 1 = sec<sup>2</sup>t tan<sup>2</sup>t + 1 = 8 tant = sqrt(7)