simeoncalixte
New member
- Joined
- Sep 21, 2014
- Messages
- 2
Question: Find the least positive value of \(\displaystyle \theta\) for which:
. . . . .\(\displaystyle \cot\left(5\theta\, -\, 10^{\circ}\right)\, =\, \dfrac{1}{\tan\left(4\theta\, -\, 3^{\circ}\right)}\)
Explain steps as well if possible been at this for a day now test tomorrow..
FOIL
\(\displaystyle \dfrac{5\theta\, -\, 10^{\circ}}{1}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle \dfrac{\left(5\theta\, -\, 10^{\circ}\right)\left(4\theta\, -\, 3^{\circ}\right)}{1\left(4\theta\, -\, 3^{\circ}\right)}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle \dfrac{20\theta\, -\, 5\theta(3^{\circ})\, -\, 4\theta(10^{\circ})\, +\, 30^{\circ}}{4\theta\, -\, 3^{\circ}}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle 20\theta\, -\, \theta(7^{\circ})\, +\, 30^{\circ}\)
this is what i have done but it doesn't look right at all.. so please help
. . . . .\(\displaystyle \cot\left(5\theta\, -\, 10^{\circ}\right)\, =\, \dfrac{1}{\tan\left(4\theta\, -\, 3^{\circ}\right)}\)
Explain steps as well if possible been at this for a day now test tomorrow..
FOIL
\(\displaystyle \dfrac{5\theta\, -\, 10^{\circ}}{1}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle \dfrac{\left(5\theta\, -\, 10^{\circ}\right)\left(4\theta\, -\, 3^{\circ}\right)}{1\left(4\theta\, -\, 3^{\circ}\right)}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle \dfrac{20\theta\, -\, 5\theta(3^{\circ})\, -\, 4\theta(10^{\circ})\, +\, 30^{\circ}}{4\theta\, -\, 3^{\circ}}\, =\, \dfrac{1}{4\theta\, -\, 3^{\circ}}\)
\(\displaystyle 20\theta\, -\, \theta(7^{\circ})\, +\, 30^{\circ}\)
this is what i have done but it doesn't look right at all.. so please help
Last edited by a moderator: