We use the unit‑circle model and fix the circumcenter at the origin. Take
[math]A=-i,\qquad B=e^{i\beta},\qquad C=e^{i\gamma}[/math][math]H=A+B+C,\qquad M=\frac{B+C}{2}[/math][math]P=-i\,p,\qquad Q=-i\,q\qquad(p,q\in\mathbb R)[/math]Define the direction vectors used in the perpendicular‑bisector forms:
[math]u:=H-P,\qquad v:=P-Q[/math]
Finally define the two scalar quantities (these came from the factorization of the long difference ):
[math]\alpha:=(H+P-2A)\cdot u,\qquad \beta:=(P+Q-2A)\cdot v[/math]
Our goal is to show the compact identity
[math](M-A)\cdot(\alpha v-\beta u)=0[/math]
Decompose along [imath]OA[/imath] and its perpendicular
Write with
[math]R=\Re(B+C)=\cos\beta+\cos\gamma,\qquad S=\Im(B+C)=\sin\beta+\sin\gamma[/math][math]H = A + B + C = -i + (R + iS) = R + i(S-1)[/math]
Using we get
[math]u = H - P = R + i(S-1+p) = R + i\,u_0,\qquad u_0 := S-1+p\in\mathbb R[/math]
Also
[math]H+P-2A = (R) + i(S+1-p) = R + i\alpha_0,\qquad \alpha_0 := S+1-p[/math][math]P+Q-2A = i(2-p-q) = i\beta_0,\qquad \beta_0:=2-p-q[/math]
Finally write
[math]M-A = \frac{B+C}{2} - (-i) = \frac R2 + i\Big(\frac S2 + 1\Big) =: X + iY[/math]
Compute and in these coordinates using the dot product :
[math]\alpha=(H+P-2A)\cdot u= \Re\big( (R-i\alpha_0)(R+i u_0)\big)= R^2 + \alpha_0 u_0[/math]
[math]\beta= (P+Q-2A)\cdot v= \Re\big( (i\beta_0)\cdot(-i v_0)\big)= -\beta_0 v_0[/math]
So compactly,
[math]\alpha = R^2 + \alpha_0 u_0,\qquad \beta = -\beta_0 v_0[/math]
Form [imath]\alpha v - \beta u[/imath] and take dot with [imath]M-A[/imath] using [imath]v=-iv_0,u=R+iu_0[/imath]
[math]\alpha v - \beta u = \alpha(-i v_0) - (-\beta_0 v_0)(R+i u_0) = -\beta R + i\big(-\alpha v_0 - \beta u_0\big)[/math]
Now compute the dot product again.
[math](M-A)\cdot(\alpha v-\beta u)= X(-\beta R) + Y(-\alpha v_0 - \beta u_0)= -\beta R X - Y(\alpha v_0 + \beta u_0)[/math]
Substitute and to factor out (we may assume because the degenerate case [imath]v_0=0[/imath] means and the statement is trivial (in this case [imath]P=Q[/imath]):
[math](M-A)\cdot(\alpha v-\beta u) = v_0\Big( Y(\alpha - \beta_0 u_0) - \frac{\beta_0}{2}R^2 \Big)[/math]
Thus the orthogonality condition is equivalent to the single scalar identity
[math]Y(\alpha - \beta_0 u_0) \;=\; \frac{\beta_0}{2}R^2\,\quad (1)[/math]
So we have reduced the problem to verifying [imath](1)[/imath]
Substitute explicit altitude intersection formulas from the geometry (altitude from [imath]B[/imath] perpendicular to [imath]AC[/imath], intersecting the imaginary axis), one computes
[math]p = -\sin\beta - \frac{\cos\beta\cos\gamma}{1+\sin\gamma}\qquad q = -\sin\gamma - \frac{\cos\gamma\cos\beta}{1+\sin\beta}[/math]
Using these formulas one can get explicit expressions for [imath]u_0,\alpha_0,\beta_0[/imath] in terms of [imath]\beta,\gamma[/imath] and for [imath]R,S,Y[/imath] in terms of [imath]\beta,\gamma[/imath]. Expanding numerator and denominator and clearing the common positive denominator reduces the check to verifying that a certain polynomial is identically zero using basic trig identities.
We already had
[math]\alpha=R^2+\alpha_0u_0,\qquad \beta=-\beta_0 v_0,\qquad \alpha_0:=S+1-p,\ \ \beta_0:=2-p-q[/math]
Our goal reduces to the scalar identity
[math]Y(\alpha-\beta_0 u_0)=\frac{\beta_0}{2}R^2\qquad (\star)[/math]
Key simplifications
Use the classical “tangent half‑angle” trick in its gentlest form:
[math]\frac{\cos\gamma}{1+\sin\gamma}=\frac{1-\sin\gamma}{\cos\gamma},\qquad \frac{\cos\beta}{1+\sin\beta}=\frac{1-\sin\beta}{\cos\beta}[/math]
[math]t_\gamma:=\frac{1-\sin\gamma}{\cos\gamma},\qquad t_\beta:=\frac{1-\sin\beta}{\cos\beta}[/math]
[math]p= -\sin\beta - \cos\beta\,t_\gamma,\qquad q= -\sin\gamma - \cos\gamma\,t_\beta[/math]
A clean formula for [imath]u_0[/imath]
[math]u_0=S-1+p = (\sin\beta+\sin\gamma)-1 -\sin\beta - \cos\beta\,t_\gamma = -(1-\sin\gamma)\Big(1+\frac{\cos\beta}{\cos\gamma}\Big)[/math][math][/math][math]\,u_0 = -\,t_\gamma\,(\cos\beta+\cos\gamma)\,= -\,t_\gamma\,R[/math]
Handy expressions for [imath]\alpha_0[/imath] and [imath]\beta_0[/imath].
[math]\alpha_0=S+1-p = (\sin\beta+\sin\gamma)+1 +\sin\beta +\cos\beta\,t_\gamma = 1+2\sin\beta+\sin\gamma+\cos\beta\,t_\gamma[/math]
[math]\beta_0=2-p-q =2+\sin\beta+\cos\beta t_{\gamma}+\sin \gamma+\cos \gamma t_{\beta}=2+S+\cos\beta t_{\gamma}+\cos \gamma t_{\beta}[/math]
Rewrite [imath]\alpha-\beta_0u_0[/imath] using [imath]\alpha=R^2+\alpha_0u_0[/imath] and [imath]u_0=-Rt_\gamma[/imath]
[math]\alpha-\beta_0 u_0 = R^2 + u_0(\alpha_0-\beta_0) = R^2 - R t_\gamma\big(\alpha_0-\beta_0\big)[/math]
[math]\alpha_0-\beta_0 = (1+2\sin\beta+\sin\gamma+\cos\beta t_\gamma) - (2+\sin\beta+\sin\gamma+\cos\beta t_\gamma+\cos\gamma t_\beta) = \sin\beta -1 - \cos\gamma\,t_\beta[/math]
[math]\alpha-\beta_0 u_0 = R^2 - R t_\gamma\big(\sin\beta-1-\cos\gamma t_\beta\big) = R^2 + R t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big)[/math]
Multiply by [imath]Y[/imath] and compare with [imath](\star)[/imath]
[math]Y(\alpha-\beta_0 u_0) = YR^2 + YR\,t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big)[/math]
[math](Y-\tfrac{\beta_0}{2})R^2 + YR\,t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big)=0[/math]Expand the expression
[math]\frac{\beta_0}{2}-Y=\frac12\big(\cos\beta\,t_\gamma+\cos\gamma\,t_\beta\big)\quad\Longrightarrow\quad Y-\frac{\beta_0}{2}=-\frac12\big(\cos\beta\,t_\gamma+\cos\gamma\,t_\beta\big)[/math]
[math]-\frac12 R\big(\cos\beta\,t_\gamma+\cos\gamma\,t_\beta\big) \;+\; Y\,t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big)=0[/math]
[math]-\,R\big(\cos\beta\,t_\gamma+\cos\gamma\,t_\beta\big) \;+\;(2+S)\,t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big)=0[/math]
Insert the values of [imath]t_\beta[/imath] and [imath]t\gamma[/imath]
[math]-(\cos\beta+\cos\gamma)\Big(\cos\beta\,\frac{1-\sin\gamma}{\cos\gamma} +\cos\gamma\,\frac{1-\sin\beta}{\cos\beta}\Big)+(2+\sin\beta+\sin\gamma)\,\frac{1-\sin\gamma}{\cos\gamma}\Big((1-\sin\beta)+\cos\gamma\,\frac{1-\sin\beta}{\cos\beta}\Big)=0[/math].
Now note that [math](1-\sin\beta)(1+\sin\beta)=\cos^2\beta[/math][math](1-\sin\gamma)(1+\sin\gamma)=cos^2\gamma[/math]
Compute each part separately, we start with the righthand side of the expression
Multiply by [imath]1+\sin\beta[/imath]
[math](1+\sin\beta)\frac{(1-\sin\gamma)}{\cos\gamma}(1-\sin\beta)(1+\frac{\cos\gamma}{\cos\beta})=\cos^2\beta t_\gamma+\cos\beta(1-\sin\gamma)[/math]
And similarly multiply by [imath]1+\sin\gamma[/imath]
[math](1+\sin\gamma)\frac{(1-\sin\gamma)}{\cos\gamma}(1-\sin\beta)(1+\frac{\cos\gamma}{\cos\beta})=\cos^2\gamma t_\beta+\cos\gamma(1-\sin\beta)[/math]
Hence
[math](2+S)\,t_\gamma\big(1-\sin\beta+\cos\gamma t_\beta\big) =\cos^2\beta t_\gamma+\cos^2\gamma t_\beta+\cos\beta(1-sin\gamma)+cos\gamma(1-\sin\beta)[/math]
Remains to compute the lefthand side
[math]-R(\cos\beta t_\gamma+\cos\gamma t_\beta)=-(\cos\beta+\cos\gamma)\left(\cos\beta\frac{1-\sin\gamma}{\cos\gamma}+\cos\gamma\frac{1-\sin\beta}{\cos\beta}\right)[/math][math]-R(\cos\beta t_\gamma+\cos\gamma t_\beta)=-\cos^2\beta t_\gamma-\cos^2\gamma t_\beta-\cos\beta(1-\sin\gamma)-\cos\gamma(1-\sin\beta)[/math]
Now observe the sweet cancellation! This matches exactly the negative of the other expression and we see the cancellation is transparent when we add back everything vanishes. Therefore [imath](\star)[/imath] holds, and thus [imath](M-A)\cdot(\alpha v-\beta u)=0[/imath]. This implies the circumcenter of [imath]\Delta HPQ[/imath] lies on the line [imath]AM[/imath] as required [imath]\square[/imath].