I need some help solving this integration problem.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 Mar 15, 2021 #2 use the substitution [MATH]t=\sqrt{x}[/MATH]
P ParveshD.Singh New member Joined Oct 22, 2020 Messages 9 Mar 15, 2021 #3 I tried that and i got to tan^-1(u).u/u+u^(3), now im stuck.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 Mar 15, 2021 #4 [MATH]t=\sqrt{x} \implies dt = \dfrac{dx}{2\sqrt{x}}[/MATH] [MATH]2\int \dfrac{\arctan{\sqrt{x}}}{1+x} \cdot \dfrac{dx}{2\sqrt{x}}[/MATH] [MATH]2\int \arctan{t} \cdot \dfrac{1}{1+t^2} \, dt[/MATH] easy integral now ...
[MATH]t=\sqrt{x} \implies dt = \dfrac{dx}{2\sqrt{x}}[/MATH] [MATH]2\int \dfrac{\arctan{\sqrt{x}}}{1+x} \cdot \dfrac{dx}{2\sqrt{x}}[/MATH] [MATH]2\int \arctan{t} \cdot \dfrac{1}{1+t^2} \, dt[/MATH] easy integral now ...