\textcolor{indigo}{\bold{Solve.}} \sum_{k=0}^{\infty}(-1)^k\frac{3}{k!}
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Aug 20, 2025 #1 \(\displaystyle \textcolor{indigo}{\bold{Solve.}}\) \(\displaystyle \sum_{k=0}^{\infty}(-1)^k\frac{3}{k!}\)
\(\displaystyle \textcolor{indigo}{\bold{Solve.}}\) \(\displaystyle \sum_{k=0}^{\infty}(-1)^k\frac{3}{k!}\)
Agent Smith Full Member Joined Oct 18, 2023 Messages 530 Aug 21, 2025 #2 3k, 0 < k < 1 Is it [imath]\pi[/imath]?
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Aug 22, 2025 #3 \(\displaystyle \lim_{k\rightarrow \infty}\frac{3}{(k + 1)!}\frac{k!}{3} = \lim_{k\rightarrow \infty}\frac{k!}{(k + 1)k!} = \lim_{k\rightarrow \infty}\frac{1}{k + 1} = 0 < 1\) Then, \(\displaystyle \sum_{k=0}^{\infty}(-1)^k\frac{3}{k!}\) \(\displaystyle \ \textcolor{blue}{\text{converges.}}\)
\(\displaystyle \lim_{k\rightarrow \infty}\frac{3}{(k + 1)!}\frac{k!}{3} = \lim_{k\rightarrow \infty}\frac{k!}{(k + 1)k!} = \lim_{k\rightarrow \infty}\frac{1}{k + 1} = 0 < 1\) Then, \(\displaystyle \sum_{k=0}^{\infty}(-1)^k\frac{3}{k!}\) \(\displaystyle \ \textcolor{blue}{\text{converges.}}\)