Math...not sure if I did this correctly.....please help!!

jenzy569

New member
Joined
Jul 13, 2009
Messages
36
(a) translate the argument into symbolic form and (b) determine if the argument is valid or invalid. You may compare the argument to a standard form or use a truth table.

If Nicholas Thompson teaches this course, then I will get a passing grade.

I did not get a passing grade.

? Nicholas Thompson did not teach the course.

I got:

Assume that p = Nicholas Thompson teaches this course. Assume q = I will get a passing grade. The symbolic form is ~q->~p

The truth table is:

p. ~p q. ~q. ~q->~p

T. F T. F. T
T. F F. T. F
F. T T. F. T
F. T F. T. T

So the conclusion is valid.

I don't believe this is correct....please help!
 
Re: Math...not sure if I did this correctly.....please help!

Hello, jenzy569!

(a) Translate the argument into symbolic form.
(b) Determine if the argument is valid or invalid.
You may compare the argument to a standard form or use a truth table.

If Nicholas Thompson teaches this course, then I will get a passing grade.
I did not get a passing grade.
? Nicholas Thompson did not teach the course.


\(\displaystyle \text{I got:}\)

\(\displaystyle p = \text{Nicholas Thompson teaches this course.}\)
\(\displaystyle q = \text{I will get a passing grade.}\)
\(\displaystyle \text{The symbolic form is: }\sim q \to \sim p\) . This is wrong.

The truth table is:

. . \(\displaystyle \begin{array}{|c|c|c|c||c|} \hline p & \sim\!p & q & \sim\!q & \sim\!q \to\, \sim\!p \\ \hline \\[-4mm] T&F&T&F&T \\ T&F&F&T&F \\ F&T&T&F&T \\ F&T&F&T&T \\ \hline \end{array}\) . This is wrong.

So the conclusion is valid. . This is wrong.

I don't believe this is correct. . You're right!

\(\displaystyle \text{The argument has this form: }\;\begin{array}{c} p \to q \\ \sim\!q \\ \hline \therefore \;\sim\!p\;\;\; \end{array}\)

\(\displaystyle \text{Hence, we have: }\:[(p \to q)\, \wedge \sim\!q] \to \,\sim\!p\)


\(\displaystyle \text{The truth table is:}\)

. . \(\displaystyle \begin{array}{|c|c||ccccccc|} \hline \\[-4mm] p & q & [(p & \to & q) & \wedge & \sim\!q] & \to & \sim\!p \\ \hline \\[-4mm] T&T&T&T&T&F&F&\bf{T}&F \\ T&F&T&F&F&T&T&\bf{T}&F \\ F&T&F&T&T&F&F&\bf{T}&T \\ F&F&F&T&F&T&T&\bf{T}&T \\ \hline && _1 & _2 & _1 & _3 & _1 & _4 & _1 \\ \hline \end{array}\)
. . . . . . . . . . . . . . . . . . . . . . . . . . \(\displaystyle \uparrow\)
. . . . . . . . . . . . . . . . . . . . . . . . .\(\displaystyle \text{Valid!}\)
 
Top