What is the rule for pattern
2,4,7,14,17,34,37,74,77,154
Yes, there are an infinite number of answers.
For other sequence problems, they could eliminate all ambiguities
by stating
"What are the next numbers (or what are the missing
numbers "inside" the sequence) if it is arithmetic, geometric,
harmonic, or something else?"
-------------------------------------------------------------
2, 2 + 5, 2 + 5 + 10, 2 + 5 + 10 + 20, 2 + 5 + 10 + 20 + 40,...
2 + 5(0) , 2 + 5(1), 2 + 5(3), 2 + 5(7), 2 + 5(15),...
0, 1, 3, 7, 15, ...
5[2^(n - 1) - 1]
2 + 5[2^((n - 1)/2) - 1]
\(\displaystyle 2 + 5(2^\frac{n - 1}{2}} - 1) , \ for \ n \ odd\)
--------------------------------------------------------------------
4, 14, 34, 74,..
4 + 0(10), 4 + 1(10), 4 + 3(10), 4 + 7(10),...
4 + 10[2^(n/2) - 1]
\(\displaystyle 4 + 10(2^{\frac{n}{2}} - 1), \ for \ n \ even\)
--------------------------------------------------------------------
--------------------------------------------------------------------
One of the possible ways:
\(\displaystyle f(n) \ = \ 2 \ + \ 5(2^{\frac{n - 1}{2}} - 1), \ for \ n \ odd\)
\(\displaystyle f(n) \ = \ 4 \ + \ 10(2^{\frac{n}{2}} - 1), \ for \ n \ even\)