partial differential equation - 4

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
\(\displaystyle \textcolor{indigo}{\bold{Solve.}}\)

\(\displaystyle a\frac{\partial w}{\partial x} + b\frac{\partial w}{\partial y} = cw + (\beta x^n + \lambda y^m)w^k\)
 
This one is tough.

😭😭1756593748460.png1756593761730.png


\(\displaystyle \frac{dx}{a} = \frac{dy}{b} = \frac{dw}{cw + (\beta x^n + \lambda y^m)w^k}\)


\(\displaystyle \int\frac{dx}{a} = \int\frac{dy}{b}\)


\(\displaystyle b\int \ dx = a\int \ dy\)


\(\displaystyle bx = ay + C_1\)


\(\displaystyle bx - ay = C_1\)

Then,

\(\displaystyle \Phi(C_1) = \Phi(bx - ay) = C_2\)
 
We introduce the indepenedent variable \(\displaystyle s\) such that:

\(\displaystyle \frac{dx}{ds} = a\)


\(\displaystyle \frac{dy}{ds} = b\)


\(\displaystyle \frac{dw}{ds} = cw + (\beta x^n + \lambda y^m)w^k\)

Then,

\(\displaystyle dx = a \ ds\)


\(\displaystyle dy = b \ ds\)

Or

\(\displaystyle \int dx = \int a \ ds\)


\(\displaystyle \int dy = \int b \ ds\)

Or

\(\displaystyle x = as + x_0\)


\(\displaystyle y = bs + y_0\)

Then,

\(\displaystyle \frac{dw}{ds} = cw + (\beta (as + x_0)^n + \lambda (bs + y_0)^m)w^k\)

Let \(\displaystyle v = w^{1-k}\).

Then,

\(\displaystyle \frac{dv}{ds} = \frac{dw^{1-k}}{ds} = \frac{dw^{1-k}}{dw}\frac{dw}{ds} = (1- k)w^{-k}[cw + (\beta (as + x_0)^n + \lambda (bs + y_0)^m)w^k]\)

Simplify.

\(\displaystyle \frac{dv}{ds} = c(1- k)w^{1-k} + (1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)\)

Or

\(\displaystyle \frac{dv}{ds} - c(1- k)v = (1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)\)

This is just an ordinary differential equation and it can be solved by integrating factor.

Let \(\displaystyle F(s)\) be the integrating factor, then

\(\displaystyle F(s) = \text{exp}\bigg(\int c(1 - k) \ ds\bigg) = \text{exp}\bigg(c(1 - k)s \bigg)\)

Divide it by each term in the differential equation.

\(\displaystyle \frac{1}{F(s)}\frac{dv}{ds} - \frac{c(1- k)v}{F(s)} = \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)}\)

Or

\(\displaystyle \frac{d}{ds}\left(\frac{v}{F(s)}\right) = \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)}\)

Or

\(\displaystyle \int\frac{d}{ds}\left(\frac{v}{F(s)}\right) \ ds = \int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\)

Or

\(\displaystyle \frac{v}{F(s)} + D = \int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\)

Or

\(\displaystyle v = -DF(s)+ F(s)\int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\)

Or

\(\displaystyle v = C_2F(s)+ F(s)\int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\)

Or

\(\displaystyle v = \Phi(bx - ay)F(s) + F(s)\int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\)

We know \(\displaystyle v = w^{1-k}\)

Then, the general solution to the partial differential equation is:

\(\displaystyle w = v^{\frac{1}{1 - k}} = \left(\Phi(bx - ay)F(s) + F(s)\int \frac{(1- k)(\beta (as + x_0)^n + \lambda (bs + y_0)^m)}{F(s)} \ ds\right)^{\frac{1}{1-k}}\)

where

\(\displaystyle F(s) = \text{exp}\bigg(c(1 - k)s \bigg)\)
\(\displaystyle x = as + x_0\)
\(\displaystyle y = bs + y_0\)
 
Last edited:
Top