logistic_guy
Senior Member
- Joined
- Apr 17, 2024
- Messages
- 2,214
Determine whether or not each of the following signals is periodic. In case a signal is periodic, specify its fundamental period.
\(\displaystyle \bold{(a)} \ x_a(t) = 3\cos(5t + \pi/6)\)
\(\displaystyle \bold{(b)} \ x(n) = 3\cos(5n + \pi/6)\)
\(\displaystyle \bold{(c)} \ x(n) = 2e^{j(n/6 - \pi)}\)
\(\displaystyle \bold{(d)} \ x(n) = \cos(n/8)\cos(\pi n/8)\)
\(\displaystyle \bold{(e)} \ x(n) = \cos(\pi n/2) - \sin(\pi n/8) + 3\cos(\pi n/4 + \pi/3)\)
\(\displaystyle \bold{(a)} \ x_a(t) = 3\cos(5t + \pi/6)\)
\(\displaystyle \bold{(b)} \ x(n) = 3\cos(5n + \pi/6)\)
\(\displaystyle \bold{(c)} \ x(n) = 2e^{j(n/6 - \pi)}\)
\(\displaystyle \bold{(d)} \ x(n) = \cos(n/8)\cos(\pi n/8)\)
\(\displaystyle \bold{(e)} \ x(n) = \cos(\pi n/2) - \sin(\pi n/8) + 3\cos(\pi n/4 + \pi/3)\)