For a tetrahedron, volume=(2^.5/12)a^3, surface area=(3^.5)a^2, edge=a, corners=4
For a cube, volume =a^3, surface area=6a^2, edge=a, corners=8
For an octahedron, volume=(2^.5/3)a^3, surface area=2(3^.5)a^2, edge=a, corners=6
For a dodecahedron, volume=(7.663...)a^3, surface area=(20.646...)a^2, edge=a, corners=20
For an icosahedron, volume=(2.182...)a^3, surface area=(8.660...)a^2, edge=a, corners=12
volume/(surface area * edge * corners)=P
For a tetrahedron_____.01701...=P
For a cube_____.02083...=P
For an octahedron_____.02268...=P
For a dodecahedron_____.01856...=P
For an icosahedron_____.02100...=P
Can you explain this cluster of values given P for Platonic solid geometries?
For a cube, volume =a^3, surface area=6a^2, edge=a, corners=8
For an octahedron, volume=(2^.5/3)a^3, surface area=2(3^.5)a^2, edge=a, corners=6
For a dodecahedron, volume=(7.663...)a^3, surface area=(20.646...)a^2, edge=a, corners=20
For an icosahedron, volume=(2.182...)a^3, surface area=(8.660...)a^2, edge=a, corners=12
volume/(surface area * edge * corners)=P
For a tetrahedron_____.01701...=P
For a cube_____.02083...=P
For an octahedron_____.02268...=P
For a dodecahedron_____.01856...=P
For an icosahedron_____.02100...=P
Can you explain this cluster of values given P for Platonic solid geometries?