How to past the θ to the left? Finally becomes θ = xxxxxxxx
\(\displaystyle r\, =\, \left(\dfrac{-\left(f\, \cdot\, \sin(\theta)\right)\, -\, \sqrt{\left(f\, \cdot\, \sin(\theta)\right)^2\, +\, 2as\,}}{a}\right)\, \times\, \left(f\, \cdot\, \cos(\theta)\right)\)
\(\displaystyle r\, =\, \left(\dfrac{-\left(f\, \cdot\, \sin(\theta)\right)\, -\, \sqrt{\left(f\, \cdot\, \sin(\theta)\right)^2\, +\, 2as\,}}{a}\right)\, \times\, \left(f\, \cdot\, \cos(\theta)\right)\)
Last edited by a moderator: