bloodborne
New member
- Joined
- Apr 18, 2020
- Messages
- 2
Hello! I would be very happy if someone could help me with these exercises.
(for questions 1-3)
Let alpha be an acute angle. Suppose that cos alpha = 3/4. Compute:
1)
[MATH] \begin{equation} 3 cos(2\alpha) + 2 \end{equation} [/MATH]2)
[MATH] \begin{equation} \\sin \left( \dfrac{\pi}{2}-\alpha\right)+ \cos \left( \dfrac{\pi}{2}+\alpha \right) \end{equation} [/MATH]3)
[MATH] \begin{equation} \\tan \left( \pi + \alpha\right) + \cot \left( \pi - \alpha \right) \end{equation} [/MATH]
Prove the following identity:
[MATH] \begin{equation} \dfrac{1+tan(x)}{1-tan(x)}=\dfrac{cos(x)+sin(x)}{cos(x)-sin(x)} \end{equation} [/MATH]
(for questions 1-3)
Let alpha be an acute angle. Suppose that cos alpha = 3/4. Compute:
1)
[MATH] \begin{equation} 3 cos(2\alpha) + 2 \end{equation} [/MATH]2)
[MATH] \begin{equation} \\sin \left( \dfrac{\pi}{2}-\alpha\right)+ \cos \left( \dfrac{\pi}{2}+\alpha \right) \end{equation} [/MATH]3)
[MATH] \begin{equation} \\tan \left( \pi + \alpha\right) + \cot \left( \pi - \alpha \right) \end{equation} [/MATH]
Prove the following identity:
[MATH] \begin{equation} \dfrac{1+tan(x)}{1-tan(x)}=\dfrac{cos(x)+sin(x)}{cos(x)-sin(x)} \end{equation} [/MATH]
Last edited: