logistic_guy
Senior Member
- Joined
- Apr 17, 2024
- Messages
- 2,214
Determine the values of \(\displaystyle P_x\) and \(\displaystyle E_x\) for each of the following signals:
\(\displaystyle \bold{(a)} \ x_1(t) = e^{-2t}u(t)\)
\(\displaystyle \bold{(b)} \ x_2(t) = e^{j(2t + \pi/4)}\)
\(\displaystyle \bold{(c)} \ x_3(t) = \cos t\)
\(\displaystyle \bold{(d)} \ x_1[n] = \left(\frac{1}{2}\right)^n u[n]\)
\(\displaystyle \bold{(e)} \ x_2[n] = e^{j(\pi/2n + \pi/8)}\)
\(\displaystyle \bold{(f)} \ x_3[n] = \cos \frac{\pi}{4}n\)
\(\displaystyle \bold{(a)} \ x_1(t) = e^{-2t}u(t)\)
\(\displaystyle \bold{(b)} \ x_2(t) = e^{j(2t + \pi/4)}\)
\(\displaystyle \bold{(c)} \ x_3(t) = \cos t\)
\(\displaystyle \bold{(d)} \ x_1[n] = \left(\frac{1}{2}\right)^n u[n]\)
\(\displaystyle \bold{(e)} \ x_2[n] = e^{j(\pi/2n + \pi/8)}\)
\(\displaystyle \bold{(f)} \ x_3[n] = \cos \frac{\pi}{4}n\)