Prove this using addition and difference formula?

Hello, Navo!

\(\displaystyle \text{Prove: }\:\dfrac{\cot(A\!+\!B)\!\cdot\!\cot A + 1}{\cot A - \cot(A\!+\!B)} \:=\:\cot B\)
We have: .\(\displaystyle \displaystyle \frac{\cot(A\!+\!B)\!\cdot\!\cot A +1}{\cot A - \cot(A\!+\!B)} \;=\;
\frac{\frac{1}{\tan(A+B)}\!\cdot\!\frac{1}{ \tan A} + 1}{\frac{1}{\tan A} - \frac{1}{\tan(A+B)}} \)

Multiply by \(\displaystyle \frac{\tan A\cdot\tan(A+B)}{\tan A\cdot\tan(A+B)}:\;\;\dfrac{1+\tan A\tan(A\!+\!B)}{\tan(A\!+\!B) - \tan A} \;=\;\dfrac{1}{\dfrac{\tan(A\!+\!B) - \tan A}{1+\tan A\tan(A\!+\!B)}} \)

Note that the denominator is: .\(\displaystyle \tan\big[(A\!+\!B)-A\big] \;=\;\tan B\)

Therefore, we have: .\(\displaystyle \dfrac{1}{\tan B} \:=\:\cot B\)
 
{Cot (A+B).Cot A + 1} / {Cot A - Cot (A+B)} = Cot B

You can directly use the formula:

\(\displaystyle cot(x-y) \ = \ \dfrac{cot(x) * cot(y) + 1}{cot(x) - cot(y)}\)
 
Top