[math]\sum_{n=0}^{\infty}(-1)^{n+1}\frac{\sqrt{n}}{n + 1}[/math]
If I use the alternating series test, I need to show [imath]\frac{\sqrt{n + 1}}{n + 2} \leq \frac{\sqrt{n}}{n + 1}[/imath] for all [imath]n \geq 0[/imath].
[math]\frac{\sqrt{n + 1}}{n + 2}\frac{n + 1}{\sqrt{n}} \leq 1[/math]
[math]\frac{(n + 1)^{3/2}}{n^{3/2} + 2n^{1/2}} \leq 1[/math]
It's not clear to me this inequality is true for all \(\displaystyle n \geq 1\).
If I use the alternating series test, I need to show [imath]\frac{\sqrt{n + 1}}{n + 2} \leq \frac{\sqrt{n}}{n + 1}[/imath] for all [imath]n \geq 0[/imath].
[math]\frac{\sqrt{n + 1}}{n + 2}\frac{n + 1}{\sqrt{n}} \leq 1[/math]
[math]\frac{(n + 1)^{3/2}}{n^{3/2} + 2n^{1/2}} \leq 1[/math]
It's not clear to me this inequality is true for all \(\displaystyle n \geq 1\).