logistic_guy
Senior Member
- Joined
- Apr 17, 2024
- Messages
- 2,214
Let \(\displaystyle x[n]\) be a signal with \(\displaystyle x[n] = 0\) for \(\displaystyle n < -2\) and \(\displaystyle n > 4\). For each signal given below, determine the values of \(\displaystyle n\) for which it is guaranteed to be zero.
\(\displaystyle \bold{(a)} \ x[n - 3]\)
\(\displaystyle \bold{(b)} \ x[n + 4]\)
\(\displaystyle \bold{(c)} \ x[-n]\)
\(\displaystyle \bold{(d)} \ x[-n + 2]\)
\(\displaystyle \bold{(e)} \ x[-n-2]\)
\(\displaystyle \bold{(a)} \ x[n - 3]\)
\(\displaystyle \bold{(b)} \ x[n + 4]\)
\(\displaystyle \bold{(c)} \ x[-n]\)
\(\displaystyle \bold{(d)} \ x[-n + 2]\)
\(\displaystyle \bold{(e)} \ x[-n-2]\)