Simplify (1/sin)/sin + (cos/sin)/cos

Simplify (1/sin)/sin + (cos/sin)/cos

well first (cos/sin)/cos = cos/sin * 1/cos so we get 1/sin
Then we simplify 1/sin * 1/sin = 1/ sin^2
1/sin^2 + 1/sin
= 1/sin^2 + sin/sin^2
= sin +1 /(sin^2)
 
Simplify (1/sin)/sin + (cos/sin)/cos

well first (cos/sin)/cos = cos/sin * 1/cos so we get 1/sin
Then we simplify 1/sin * 1/sin = 1/ sin^2
1/sin^2 + 1/sin
= 1/sin^2 + sin/sin^2
= sin +1 /(sin^2)

Always write sin(x), cos(x), tan(x),.... etc. Never write without the arguments such as x or Θ or Ω etc.

Apply grouping symbols to indicate order of operation.

csc(x)/sin(x)+cot(x)/cos(x)

\(\displaystyle \displaystyle{\left [\frac{\frac{1}{sin(x)}}{sin(x)}\right ] + \left [ \frac{\frac{cos(x)}{sin(x)}}{cos(x)}\right ]}\)

\(\displaystyle = \ \displaystyle{\left [\frac{1}{sin^2(x)}\right ] + \left [ \frac{1}{sin(x)}\right ]}\)

\(\displaystyle = \ \displaystyle{\frac{1 \ + \ sin(x)}{sin^2(x)}}\)
 
Top