\(\displaystyle V = \lambda k \int_{-L}^{L} \frac{1}{\sqrt{x^2 + y^2}} \ dx = 2\lambda k \int_{0}^{L} \frac{1}{\sqrt{x^2 + y^2}} \ dx\)
Ahhh this is an overwhelming integral
\(\displaystyle x = yu\)
\(\displaystyle dx = y \ du\)
\(\displaystyle V = 2\lambda k \int_{0}^{\frac{L}{y}} \frac{1}{\sqrt{u^2 + 1}} \ du\)
\(\displaystyle u = \tan v\)
\(\displaystyle du = \sec^2 v \ dv\)
\(\displaystyle V = 2\lambda k \int_{0}^{\tan^{-1}\frac{L}{y}} \sec v \ dv = 2\lambda k \int_{0}^{\tan^{-1}\frac{L}{y}} \frac{\sec^2 v + \sec v \tan v}{\sec v + \tan v} \ dv\)
\(\displaystyle w = \sec v + \tan v\)
\(\displaystyle dw = \sec v \tan v + \sec^2 v \ dv\)
\(\displaystyle V = 2\lambda k \int_{v = 0}^{v = \tan^{-1}\frac{L}{y}} \frac{1}{w} \ dw = 2\lambda k\ln w \bigg|_{v=0}^{v = \tan^{-1}\frac{L}{y}}\)
\(\displaystyle = 2\lambda k\ln (\sec v + \tan v) \bigg|_{v=0}^{v = \tan^{-1}\frac{L}{y}}\)
\(\displaystyle = 2\lambda k \left[\ln\left(\sec \tan^{-1}\frac{L}{y} + \tan \tan^{-1}\frac{L}{y}\right) - \ln(\sec 0 - \tan 0)\right]\)
\(\displaystyle = 2\lambda k\left[\ln \left(\frac{\sqrt{L^2 + y^2}}{y} + \frac{L}{y}\right) - \ln 1\right]\)
\(\displaystyle = 2\lambda k\ln \left(\frac{\sqrt{L^2 + y^2}}{y} + \frac{L}{y}\right)\)
\(\displaystyle = \frac{kQ}{L}\ln \left(\frac{\sqrt{L^2 + y^2} + L}{y} \right)\)