Need help on this problem
L Loganvega New member Joined Apr 2, 2019 Messages 1 Apr 7, 2019 #1 Need help on this problem Attachments 29D1C052-3329-4774-A176-EB7C9FADDB49.jpeg 2.1 MB · Views: 4
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Apr 7, 2019 #2 Hello, and welcome to FMH! The image is sideways, but it looks like: [MATH]\sec\left(\frac{5}{4}\theta\right)=2[/MATH] where \(0\le\theta<2\pi\) The first thing I would do, is rewrite the given equation as: [MATH]\cos\left(\frac{5}{4}\theta\right)=\frac{1}{2}[/MATH] Now, this leads to the general solution: [MATH]\frac{5}{4}\theta=2\pi k\pm\frac{\pi}{3}=\frac{\pi}{3}(6k\pm1)[/MATH] Can you proceed?
Hello, and welcome to FMH! The image is sideways, but it looks like: [MATH]\sec\left(\frac{5}{4}\theta\right)=2[/MATH] where \(0\le\theta<2\pi\) The first thing I would do, is rewrite the given equation as: [MATH]\cos\left(\frac{5}{4}\theta\right)=\frac{1}{2}[/MATH] Now, this leads to the general solution: [MATH]\frac{5}{4}\theta=2\pi k\pm\frac{\pi}{3}=\frac{\pi}{3}(6k\pm1)[/MATH] Can you proceed?
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Apr 10, 2019 #3 To follow up... [MATH]\theta=\frac{4\pi}{15}(6k\pm1)[/MATH] For appropriate values of \(k\), we find: [MATH]\theta\in\left\{\frac{4\pi}{15},\frac{4\pi}{3},\frac{28\pi}{15}\right\}[/MATH] Here's a plot of the functions: [MATH]f_1(x)=\sec\left(\frac{5}{4}x\right)[/MATH] [MATH]f_2(x)=2[/MATH] And the vertical lines: [MATH]x_1=\frac{4\pi}{15},\,x_2=\frac{4\pi}{3},\,x_3=\frac{28\pi}{15}[/MATH]
To follow up... [MATH]\theta=\frac{4\pi}{15}(6k\pm1)[/MATH] For appropriate values of \(k\), we find: [MATH]\theta\in\left\{\frac{4\pi}{15},\frac{4\pi}{3},\frac{28\pi}{15}\right\}[/MATH] Here's a plot of the functions: [MATH]f_1(x)=\sec\left(\frac{5}{4}x\right)[/MATH] [MATH]f_2(x)=2[/MATH] And the vertical lines: [MATH]x_1=\frac{4\pi}{15},\,x_2=\frac{4\pi}{3},\,x_3=\frac{28\pi}{15}[/MATH]