Trig equations

Loganvega

New member
Joined
Apr 2, 2019
Messages
1
Need help on this problem
 

Attachments

  • 29D1C052-3329-4774-A176-EB7C9FADDB49.jpeg
    29D1C052-3329-4774-A176-EB7C9FADDB49.jpeg
    2.1 MB · Views: 4
Hello, and welcome to FMH! :)

The image is sideways, but it looks like:

[MATH]\sec\left(\frac{5}{4}\theta\right)=2[/MATH] where \(0\le\theta<2\pi\)

The first thing I would do, is rewrite the given equation as:

[MATH]\cos\left(\frac{5}{4}\theta\right)=\frac{1}{2}[/MATH]
Now, this leads to the general solution:

[MATH]\frac{5}{4}\theta=2\pi k\pm\frac{\pi}{3}=\frac{\pi}{3}(6k\pm1)[/MATH]
Can you proceed?
 
To follow up...

[MATH]\theta=\frac{4\pi}{15}(6k\pm1)[/MATH]
For appropriate values of \(k\), we find:

[MATH]\theta\in\left\{\frac{4\pi}{15},\frac{4\pi}{3},\frac{28\pi}{15}\right\}[/MATH]
Here's a plot of the functions:

[MATH]f_1(x)=\sec\left(\frac{5}{4}x\right)[/MATH]
[MATH]f_2(x)=2[/MATH]
And the vertical lines:

[MATH]x_1=\frac{4\pi}{15},\,x_2=\frac{4\pi}{3},\,x_3=\frac{28\pi}{15}[/MATH]
fmh_0041.png
 
Top