forever119
New member
- Joined
- Jan 18, 2021
- Messages
- 2
let [MATH](a_n)_{n=1}^\infty [/MATH] and [MATH](b_n)_{n=1}^\infty[/MATH] be convergent sequences and let their limits be [MATH]s[/MATH] and [MATH]t[/MATH] respectively. Let the sequence [MATH](c_n)_{n=1}^\infty[/MATH] defined by [MATH]c_n=\frac{1}{n}*\sum\limits_{k=1}^n a_k*b_{n-k+1} [/MATH] then find [MATH]lim_{n \to +\infty} c_n [/MATH] I know that in this case [MATH] lim_{n \to +\infty}\frac{1}{n}*\sum\limits_{k=1}^n a_k*b_k=s*t[/MATH] I tried to use this fact but couldnt proceed