geometry problem

stephanson12

New member
Joined
Dec 16, 2023
Messages
20
Let O be the center of an acute-angled triangle ABC. OA cuts the altitudes from B and
C at points P and Q, respectively. Let H be the orthocenter and let M be the midpoint of [BC]. Prove
that the center of (HPQ) is at AM.

All hints are welcome! (Sorry for my bad english)
 
Let O be the center of an acute-angled triangle ABC. OA cuts the altitudes from B and
C at points P and Q, respectively. Let H be the orthocenter and let M be the midpoint of [BC]. Prove
that the center of (HPQ) is at AM.

All hints are welcome! (Sorry for my bad english)
Hi @stephanson12

By "
center" do you mean the centroid?

(And did you mean to write "
the center of (ΔHPQ) lies on the line AM"?)

Please provide a sketch of your interpretation of the problem (to illustrate what you have tried) and, if any further advice is required after you have done that, someone will provide further comment, I'm sure.

I would suggest you should also have a look at this website (first?).

Hope that helps. ☺️
 
Last edited:
I tried drawing it in GeoGebra. Maybe I did something wrong, but it doesn't seem like the circumcenter [imath]O'[/imath]' of [imath]\Delta HPQ[/imath] lies on the line [imath]AM[/imath]. Triangle.png
 
Let O be the center of an acute-angled triangle ABC. OA cuts the altitudes from B and
C at points P and Q, respectively. Let H be the orthocenter and let M be the midpoint of [BC]. Prove
that the center of (HPQ) is at AM.
It seems that there may be a language problem here. Three terms are possible: circumcenter, incenter, or orthocenter.
You specify circumcenter. If [imath]\Delta{ABC}[/imath] is an acute triangle then its circumcenter, [imath]\mathrm{O},[/imath] is the point that is the intersection of the perpendicular bisectors of two sides of triangle, As such [imath]m(\overline{OA})=m(\overline{OB})=m(\overline{OC})[/imath].
That is because [imath]\mathrm{O},[/imath] is the center of the circle which includes all three vertices of the triangle.
The altitudes of a triangle also intersect at a common point called the orthocenter.
 
I think I made a mistake yesterday. I tried it again and got the following.

Triangle 2.png
Where [imath]O[/imath] is the circumcenter of [imath]\Delta ABC[/imath], [imath]H[/imath] is the orthocenter of [imath]\Delta ABC[/imath],[imath]O'[/imath] is the circumcenter of [imath]\Delta HPQ[/imath], and [imath]M[/imath] is the midpoint of segment [imath]BC[/imath]. From this, it appears to be a true statement. Now you have to prove it I guess.
 
Last edited:
Let O be the circumcenter of an acute-angled triangle ABC. OA cuts the altitudes from B and
C at points P and Q, respectively. Let H be the orthocenter and let M be the midpoint of [BC]. Prove
that the circumcenter of (HPQ) is on AM.

All hints are welcome! (Sorry for my bad english)
I've added "circum" where needed and changed "at" to "on" (the only error in your English).

Here's my version of the figure, with more labels:

1730843944186.png

Now, how might we prove it?

Have you tried anything yet? We'd like you to tell us that. I don't yet see any hints other than what I've done: make a picture. (But I do see lots of parallel lines, similar triangles, and the like.)

Also, is this from a class that might imply what sort of methods to consider, or from a contest, or what?
 
I'm not particularly good at geometry but I think I've devised one approach to the problem. Without loss of generality let the unit circle of triangle [imath]ABC[/imath] be the circumcircle. Let [imath]A=-i[/imath], [imath]B=a+bi[/imath] and [imath]C=c+di[/imath].


Triangle problem.png



First, let's consider the equation of line through points. Suppose [imath]Z[/imath] is an arbitrary point on the line through [imath]W_1[/imath] and [imath]W_2[/imath]. Since the vector from [imath]W_1[/imath] to[imath]Z[/imath] is a multiple of the vector from [imath]W_1[/imath] to [imath]W_2[/imath], in terms of complex numbers we have [imath]Z-W_1=\lambda(W_2-W_1)[/imath] for some real [imath]\lambda[/imath]. Now [imath]\lambda=\bar{\lambda}[/imath] hence

[math]\frac{Z-W_1}{W_2-W_1}=\frac{\bar{Z}-\bar{W_1}}{\bar{W_2-W_1}}[/math]and any [imath]Z[/imath] satisfying the above equation corresponds to a point on the line through [imath]W_1[/imath] and [imath]W_2[/imath]. Next, consider the line passing through a point [imath]C[/imath] and perpendicular to the line through [imath]W_1[/imath] and[imath]W_2[/imath]. Let [imath]Z[/imath] be on this line. Then the vector from [imath]C[/imath] to [imath]Z[/imath] is perpendicular to the vector from [imath]W_1[/imath] to [imath]W_2[/imath]. In terms of complex numbers, we get [imath]Z-C=i\lambda(W_2-W_1)[/imath] for some real [imath]\lambda[/imath].

Hence [math]\frac{Z-C}{i(W_2-W_1)}=\frac{\bar{Z}-\bar{C}}{-i(\bar{W_2}-\bar{W_1})}[/math].

In the case when [imath]W_1[/imath] and [imath]W_2[/imath] are on the unit circle we have [imath]W_1\bar{W_1}=W_2\bar{W_2}=1[/imath]. Multiplying the numerators and denominators of the right side of the two equations above by [imath]W_1W_2[/imath] we can simplify them as

[math]Z+W_1W_2\bar{Z}=W_1+W_2[/math] and [math]Z-W_1W_2\bar{Z}=C-W_1W_2\bar{C}[/math]
Now since [imath]A[/imath], [imath]B[/imath]and [imath]C[/imath] are points on the unit circle these formulas can be applied immediately to compute [imath]Q[/imath] and [imath]P[/imath].

The line through [imath]C[/imath] perpendicular to [imath]AB[/imath] is given by

[math]Z-AB\bar{Z}=C-AB\bar{C}[/math]
And the line through [imath]0[/imath] and [imath]-i[/imath] is [imath]Z=-\bar{Z}[/imath]. Since these two lines intersect at [imath]Q[/imath], solving this system of equations for [imath]Z[/imath] gives us [imath]Q[/imath]. Hence

[math]Q=\frac{C-AB\bar{C}}{1+AB}[/math]
Similarly, the line through [imath]B[/imath] perpendicular to [imath]AC[/imath] is

[math]Z-AC\bar{Z}=B-AC\bar{B}[/math]
And this line intersects [imath]Z=-\bar{Z}[/imath] at [imath]P[/imath]. Hence

[math]P=\frac{B-AC\bar{B}}{1+AC}[/math]
Now with complex numbers, the orthocenter [imath]H=A+B+C[/imath]. Hence each vertices of the triangle [imath]HPQ[/imath] can be computed and a similar method could now be used to determine [imath]O'[/imath]. Now [imath]M =\frac{B+C}{2}[/imath]and we must show that [imath]M, O'[/imath] and [imath]A[/imath] are colinear. In other words that

[math]\frac{A-O'}{O'-M}=\lambda\in \mathbb{R}[/math]
 

Attachments

  • Triangle problem.png
    Triangle problem.png
    88 KB · Views: 2
I know the OP hasn't responded and this is considered a dead thread. But I've been thinking about this problem for a while and don't think complex numbers is the right approach since solving for the intersection of lines becomes quite complicated. Here's my approach using the above model anyway.

First, let's scale the vertices of the triangle [imath]HPQ[/imath] by 2, so let [imath]Q'=2Q[/imath], [imath]P'=2P[/imath] and [imath]H'=2H[/imath]. Scaling by a constant factor preserves angles and ratio of distances hence the circumcenter of this triangle is scaled by the same factor. So if [imath]O'[/imath] is the circumcenter of the scaled triangle [imath]H'P'Q'[/imath] then [imath]O'=2O[/imath] where [imath]O[/imath] is the circumcenter of the original triangle [imath]HPQ.[/imath]

Circumcenter problem1.png

Let [imath]E[/imath] be the midpoint of segment [imath]Q'P'[/imath] and [imath]D[/imath] be the midpoint of segment [imath]P'H'[/imath] such that [imath]E=Q+P[/imath] and [imath]D=P+H[/imath]. Let [imath]u[/imath] be the vector from [imath]D[/imath] to [imath]H'[/imath]and [imath]v[/imath] be the vector from [imath]E[/imath] to [imath]P'[/imath], then [imath]u=H-P[/imath] and [imath]v=P-Q[/imath]. Then the vector perpendicular to [imath]u[/imath] is [imath]iu[/imath] and the vector perpendicular to [imath]v[/imath] is [imath]iv[/imath]. Consider the line passing through [imath]D[/imath] perpendicular to [imath]u[/imath]. If [imath]Z[/imath] is any point on this line then it must satisfy both of the following equations.

[math]Z=D+itu=P+H+it(H-P)[/math][math]\bar{Z}=\bar{D}+\bar{i}\bar{t}\bar{u}=\bar{P}+\bar{H}-i\bar{t}(\bar{H}-\bar{P})[/math]
Since [imath]t=\bar{t}[/imath], the locus of the midpoint normal through [imath]P'H'[/imath]is given by

[math]\frac{Z-D}{iu}=\frac{\bar{Z}-\bar{D}}{\bar{i}\bar{u}}[/math]
Simplifying we obtain
[math](Z-D)\bar{u}+(\bar{Z}-\bar{D})u=0[/math]
or
[math](Z-(H+P))(\bar{H}-\bar{P})+(\bar{Z}-(\bar{H}+\bar{P}))(H-P)=0 [/math]
By similar reasoning, or by symmetry we can conclude that the locus of the midpoint normal through [imath]Q'P'[/imath] is determined by

[math](Z-E)\bar{v}+(\bar{Z}-\bar{E})v=0[/math]or
[math](Z-(P+Q))(\bar{P}-\bar{Q})+(\bar{Z}-(\bar{P}+\bar{Q}))(P-Q)=0[/math]
On solving these two equations in terms of [imath]Z[/imath] we should obtain the coordinate of [imath]O'[/imath] (if I've calculated this correctly so far). As you can see the solution would be quite complicated using this method.
 
Last edited:
From

[math](Z-D)\bar{u}+(\bar{Z}-\bar{D})u=0[/math][math](Z-E)\bar{v}+(\bar{Z}-\bar{E})v=0[/math]
First, solve for [imath]\bar{Z}[/imath] in the first equation. We get
[math]\bar{Z}=\frac{(D-Z)\bar{u}}{u}+\bar{D}[/math]
Then substitute this into the second equation. We have

[math](Z-E)\bar{v}+ \left(\frac{(D-Z)\bar{u}}{u}+D-E\right)v=0[/math]
Set [imath]v'=\frac{\bar{v}}{v}[/imath] and [imath]u'=\frac{\bar{u}}{u}[/imath], then solve for [imath]Z[/imath]

[math]Z=\frac{E(v'+1)-D(u'+1)}{v'-u'}[/math][math]Z=O'=\frac{(Q+P)(\frac{\bar{v}}{v}+1)-(P+H)(\frac{\bar{u}}{u}+1)}{\frac{\bar{v}}{v}-\frac{\bar{u}}{u}}=\frac{(P+Q)(\frac{\bar{P}-\bar{Q}}{P-Q}+1)-(H+P)(\frac{\bar{H}-\bar{P}}{H-P}+1)}{\frac{\bar{P}-\bar{Q}}{P-Q}-\frac{\bar{H}-\bar{P}}{H-P}}[/math]
 
Last edited:
[math]Z=\frac{Ev'+\bar{E}-D(u'+1)}{v'-u'}[/math]From

[math](Z-D)\bar{u}+(\bar{Z}-\bar{D})u=0[/math][math](Z-E)\bar{v}+(\bar{Z}-\bar{E})v=0[/math]
First, solve for [imath]\bar{Z}[/imath] in the first equation. We get
[math]\bar{Z}=\frac{(D-Z)\bar{u}}{u}+\bar{D}[/math]
Then substitute this into the second equation. We have

[math](Z-E)\bar{v}+ \left(\frac{(D-Z)\bar{u}}{u}+D-E\right)v=0[/math]
Set [imath]v'=\frac{\bar{v}}{v}[/imath] and [imath]u'=\frac{\bar{u}}{u}[/imath], then solve for [imath]Z[/imath]

[math]Z=\frac{E(v'+1)-D(u'+1)}{v'-u'}[/math][math]Z=O'=\frac{(Q+P)(\frac{\bar{v}}{v}+1)-(P+H)(\frac{\bar{u}}{u}+1)}{\frac{\bar{v}}{v}-\frac{\bar{u}}{u}}=\frac{(P+Q)(\frac{\bar{P}-\bar{Q}}{P-Q}+1)-(H+P)(\frac{\bar{H}-\bar{P}}{H-P}+1)}{\frac{\bar{P}-\bar{Q}}{P-Q}-\frac{\bar{H}-\bar{P}}{H-P}}[/math]
I made an obvious error yesterday,

It should be
[math](Z-E)\bar{v}+\left(\frac{(D-Z)\bar{u}}{u}+D-\bar{E})\right)v=0[/math]
[math](Z-E)v'+(D-Z)u'+D-\bar{E}=0[/math][math]Zv'-Ev'+Du'-Zu'+D-\bar{E}=0[/math][math]Z(v'-u')=Ev'+\bar{E}-D(u'+1)[/math][math]Z=\frac{Ev'+\bar{E}-D(u'+1)}{v'-u'}[/math]
It's an even uglier solution but I guess that's the truth.
 
[imath]v'=\frac{\bar{v}}{v}[/imath]I made an obvious error yesterday,

It should be
[math](Z-E)\bar{v}+\left(\frac{(D-Z)\bar{u}}{u}+D-\bar{E})\right)v=0[/math]
[math](Z-E)v'+(D-Z)u'+D-\bar{E}=0[/math][math]Zv'-Ev'+Du'-Zu'+D-\bar{E}=0[/math][math]Z(v'-u')=Ev'+\bar{E}-D(u'+1)[/math][math]Z=\frac{Ev'+\bar{E}-D(u'+1)}{v'-u'}[/math]
It's an even uglier solution but I guess that's the truth.
Man, I'm sloppy today as well. I will redo everything again.

[math](Z-D)\bar{u}+(\bar{Z}-\bar{D})u=0[/math][math](Z-E)\bar{v}+(\bar{Z}-\bar{E})v=0[/math]
Solve for [imath]\bar{Z}[/imath] in the first equation.

[math]\bar{Z}=\frac{(D-Z)\bar{u}}{u}+\bar{D}[/math]And substitute into the second equation

[math](Z-E)\bar{v}+\left(\frac{(D-Z)\bar{u}}{u}+\bar{D}-\bar{E})\right)v=0[/math]
Set [imath]v'=\frac{\bar{v}}{v}[/imath] and [imath]u'=\frac{\bar{u}}{u}[/imath], then divide by [imath]v[/imath] in the above expression to obtain

[math](Z-E)v'+(D-Z)u'+\bar{D}-\bar{E}=0[/math]
Solve for [imath]Z[/imath]

[math]Z(v'-u')=Ev'+\bar{E}-(Du'+\bar{D})[/math][math]Z=\frac{Ev'+\bar{E}-(Du'+\bar{D})}{(v'-u')}[/math]
 
Last edited:
Hi everyone, I've been working on this geometry problem today and feel like I'm close to cracking it — but I could use some help with one final step. I'm trying to show that:

[math]\Im(\overline{A}M) \left[ \Im(H\overline{P}) - \Im(H\overline{Q}) + \Im(P\overline{Q}) \right] = \left( |H|^2 - |P|^2 \right) \Re\left( \overline{M - A} \cdot v \right) - \left( |P|^2 - |Q|^2 \right) \Re\left( \overline{u} \cdot (M - A) \right)[/math]
Here the symbols are defined as above, where [imath]u=H-P[/imath] and [imath]v=P-Q[/imath].
 
Hi everyone, I've been working on this geometry problem today and feel like I'm close to cracking it — but I could use some help with one final step. I'm trying to show that:

[math]\Im(\overline{A}M) \left[ \Im(H\overline{P}) - \Im(H\overline{Q}) + \Im(P\overline{Q}) \right] = \left( |H|^2 - |P|^2 \right) \Re\left( \overline{M - A} \cdot v \right) - \left( |P|^2 - |Q|^2 \right) \Re\left( \overline{u} \cdot (M - A) \right)[/math]
Here the symbols are defined as above, where [imath]u=H-P[/imath] and [imath]v=P-Q[/imath].
To add some more context. We work on the unit circle with [imath]A = -i[/imath], [imath]|A| = |B| = |C| = 1[/imath]

Define [imath]H = A + B + C[/imath], [imath]M = \frac{B + C}{2}[/imath],

[math]P = \frac{B^2 - A C}{B(1 + A C)}, \quad Q = \frac{C^2 - A B}{C(1 + A B)}[/math]
For the scaled triangle [imath]H' = 2H[/imath], [imath]P' = 2P[/imath], [imath]Q' = 2Q[/imath], its circumcenter is [imath]O' = 2O[/imath], where [imath]O[/imath] is the circumcenter of [imath]\triangle H P Q[/imath].

We use the perpendicular bisector forms (for any complex [imath]Z[/imath]):

[math]L_{HP}(Z) := (Z - D) \overline{u} + (\overline{Z} - \overline{D}) u = 0, \quad L_{PQ}(Z) := (Z - E) \overline{v} + (\overline{Z} - \overline{E}) v = 0[/math]
with [imath]D = P + H[/imath], [imath]E = P + Q[/imath], [imath]u = H - P[/imath], [imath]v = P - Q[/imath].

Their unique common solution is the circumcenter [imath]Z = O'[/imath] of [imath]\triangle H' P' Q'[/imath].

Our collinearity target is

[math]\frac{O - A}{M - A} \in \mathbb{R} \iff (Z - A)(\overline{M} - \overline{A}) - (\overline{Z} - \overline{A})(M - A) = 0[/math]
Define the real-linear form in [imath]Z[/imath]:

[math]W(Z) := (Z - A)(\overline{M} - \overline{A}) - (\overline{Z} - \overline{A})(M - A).[/math]
We want to show [imath]W(Z) = 0[/imath] at [imath]Z = O'[/imath].

Now consider a (complex) linear combination of the two bisector forms:

[math]L(Z) := s L_{HP}(Z) + t L_{PQ}(Z),[/math]
where [imath]s[/imath], [imath]t[/imath] are coefficients that we will choose to make the [imath]Z[/imath]- and [imath]\overline{Z}[/imath]-coefficients in [imath]L(Z)[/imath] match those in [imath]W(Z)[/imath].

Expanding [imath]L(Z)[/imath]:

[math]L(Z) = s \left[ Z \overline{u} + \overline{Z} u - (D \overline{u} + \overline{D} u) \right] + t \left[ Z \overline{v} + \overline{Z} v - (E \overline{v} + \overline{E} v) \right][/math][math]L(Z)= (s \overline{u} + t \overline{v}) Z + (s u + t v) \overline{Z} - \left[ s (D \overline{u} + \overline{D} u) + t (E \overline{v} + \overline{E} v) \right].[/math]
We want this to coincide with
[math]W(Z) = (\overline{M} - \overline{A}) Z - (M - A) \overline{Z} + \underbrace{\overline{A}(M - A) - A (\overline{M} - \overline{A})}_{=: C_0}.[/math]So impose the matching conditions on the [imath]Z[/imath], [imath]\overline{Z}[/imath] coefficients:
[math]s \overline{u} + t \overline{v} = \overline{M} - \overline{A}, \quad s u + t v = -(M - A) \quad (1)[/math]these determine [imath]s[/imath], [imath]t[/imath] uniquely as a [imath]2 \times 2[/imath] linear system.

We won't need the explicit [imath]s[/imath], [imath]t[/imath] values yet.

Under (1), the difference is a constant (independent of [imath]Z[/imath]):
[math]W(Z) - L(Z) = C_0 + \left[ s (D \overline{u} + \overline{D} u) + t (E \overline{v} + \overline{E} v) \right] \quad (2)[/math]Thus, to prove [imath]W(O') = 0[/imath], it suffices to show that the constant on the right of (2) is zero once (1) holds; because [imath]L(O') = 0[/imath] (each bisector vanishes at [imath]O'[/imath]), giving [imath]W(O') = 0[/imath]. The proof reduces to verifying:
[math]C_0 + s \left(D \overline{u} + \overline{D} u\right) + t \left(E \overline{v} + \overline{E} v\right) = 0[/math]under the relations (1). This is an algebraic identity leveraging the definitions of [imath]A, B, C, H, M, P, Q[/imath] and unit circle properties.
 
Last edited:
To add some more context. We work on the unit circle with [imath]A = -i[/imath], [imath]|A| = |B| = |C| = 1[/imath]

Define [imath]H = A + B + C[/imath], [imath]M = \frac{B + C}{2}[/imath],

[math]P = \frac{B^2 - A C}{B(1 + A C)}, \quad Q = \frac{C^2 - A B}{C(1 + A B)}[/math]
For the scaled triangle [imath]H' = 2H[/imath], [imath]P' = 2P[/imath], [imath]Q' = 2Q[/imath], its circumcenter is [imath]O' = 2O[/imath], where [imath]O[/imath] is the circumcenter of [imath]\triangle H P Q[/imath].

We use the perpendicular bisector forms (for any complex [imath]Z[/imath]):

[math]L_{HP}(Z) := (Z - D) \overline{u} + (\overline{Z} - \overline{D}) u = 0, \quad L_{PQ}(Z) := (Z - E) \overline{v} + (\overline{Z} - \overline{E}) v = 0[/math]
with [imath]D = P + H[/imath], [imath]E = P + Q[/imath], [imath]u = H - P[/imath], [imath]v = P - Q[/imath].

Their unique common solution is the circumcenter [imath]Z = O'[/imath] of [imath]\triangle H' P' Q'[/imath].

Our collinearity target is

[math]\frac{O - A}{M - A} \in \mathbb{R} \iff (Z - A)(\overline{M} - \overline{A}) - (\overline{Z} - \overline{A})(M - A) = 0[/math]
Define the real-linear form in [imath]Z[/imath]:

[math]W(Z) := (Z - A)(\overline{M} - \overline{A}) - (\overline{Z} - \overline{A})(M - A).[/math]
We want to show [imath]W(Z) = 0[/imath] at [imath]Z = O'[/imath].

Now consider a (complex) linear combination of the two bisector forms:

[math]L(Z) := s L_{HP}(Z) + t L_{PQ}(Z),[/math]
where [imath]s[/imath], [imath]t[/imath] are coefficients that we will choose to make the [imath]Z[/imath]- and [imath]\overline{Z}[/imath]-coefficients in [imath]L(Z)[/imath] match those in [imath]W(Z)[/imath].

Expanding [imath]L(Z)[/imath]:

[math]L(Z) = s \left[ Z \overline{u} + \overline{Z} u - (D \overline{u} + \overline{D} u) \right] + t \left[ Z \overline{v} + \overline{Z} v - (E \overline{v} + \overline{E} v) \right][/math][math]L(Z)= (s \overline{u} + t \overline{v}) Z + (s u + t v) \overline{Z} - \left[ s (D \overline{u} + \overline{D} u) + t (E \overline{v} + \overline{E} v) \right].[/math]
We want this to coincide with
[math]W(Z) = (\overline{M} - \overline{A}) Z - (M - A) \overline{Z} + \underbrace{\overline{A}(M - A) - A (\overline{M} - \overline{A})}_{=: C_0}.[/math]So impose the matching conditions on the [imath]Z[/imath], [imath]\overline{Z}[/imath] coefficients:
[math]s \overline{u} + t \overline{v} = \overline{M} - \overline{A}, \quad s u + t v = -(M - A) \quad (1)[/math]these determine [imath]s[/imath], [imath]t[/imath] uniquely as a [imath]2 \times 2[/imath] linear system.

We won't need the explicit [imath]s[/imath], [imath]t[/imath] values yet.

Under (1), the difference is a constant (independent of [imath]Z[/imath]):
[math]W(Z) - L(Z) = C_0 + \left[ s (D \overline{u} + \overline{D} u) + t (E \overline{v} + \overline{E} v) \right] \quad (2)[/math]Thus, to prove [imath]W(O') = 0[/imath], it suffices to show that the constant on the right of (2) is zero once (1) holds; because [imath]L(O') = 0[/imath] (each bisector vanishes at [imath]O'[/imath]), giving [imath]W(O') = 0[/imath]. The proof reduces to verifying:
[math]C_0 + s \left(D \overline{u} + \overline{D} u\right) + t \left(E \overline{v} + \overline{E} v\right) = 0[/math]under the relations (1). This is an algebraic identity leveraging the definitions of [imath]A, B, C, H, M, P, Q[/imath] and unit circle properties.
Continuation of the proof. First we show that

[math]D\bar{u}+\bar{D}u=(P+H)(\bar{H}-\bar{P})+(\bar{P}+\bar{H})(H-P)=\underbrace{(P\overline{H} + P\overline{H})}_{=2\Re(P\bar{H})}-\underbrace{(P\overline{P} + \overline{P}P)}_{=-2\left|P\right|^2}+\underbrace{(H\overline{H} + \overline{H}H)}_{=2\left|H\right|^2}-\underbrace{(H\overline{P} + \overline{H}P)}_{=2\Re(H\bar{P})}[/math]Hence [math]D\bar{u}+\bar{D}u=2(\left|H\right|^2-\left|P\right|^2)[/math]since [imath]\Re(P\bar{H})=\Re(H\bar{P})[/imath] and in a similar way we conclude
[math]E\bar{v}+\bar{E}v=2(\left|P\right|^2-\left|Q\right|^2)[/math]Now we simplify [imath]C_0[/imath]
[math]C_0=\bar{A}(M-A)-A(\bar{M}-\bar{A})= \bar{A}M-A\bar{M}[/math]. Thus
[math]W(Z)-L(Z)=(\bar{A}M-A\bar{M})+2s(\left|H\right|^2-\left|P\right|^2)+2t(\left|P\right|^2-\left|Q\right|^2) \quad (3) [/math]
Solving system (1) [imath]s \overline{u} + t \overline{v} = \overline{M} - \overline{A}, \quad s u + t v = -(M - A)[/imath] using Cramer's rule. Let [imath]\Delta=\bar{u}v-u\bar{v}=2i\Im(\bar{u}v)[/imath] then we obtain
[math]s=\frac{(\bar{M}-\bar{A})v+(M-A)\bar{v}}{\Delta} \quad t=\frac{-(M-A)\bar{u}-(\bar{M}-\bar{A})u}{\Delta} \quad (4)[/math]Substitution of (4) back into (3) gives
[math]\Delta\left(W(Z)-L(Z)\right)=\Delta(\bar{A}M-A\bar{M})+2(\left|H\right|^2-\left|P\right|^2)\left((\bar{M}-\bar{A})v+(M-A)\bar{v}\right)-2(\left|P\right|^2-\left|Q\right|^2)\left(\bar{u}(M-A)+u(\bar{M}-\bar{A} )\right)[/math]
Key observation: each bracket is [imath]2\Re(\cdot)[/imath] and we note that
[math]\left(\bar{M}-\bar{A}\right)v+(M-A)\bar{v}=2\Re\left(\overline{\left( M - A \right)}v\right)[/math][math]\left(M-A\right)\bar{u}+(\bar{M}-\bar{A})u=2\Re\left((M-A)\bar{u}\right)[/math][math]\bar{A}M-A\bar{M}=2i\Im(\bar{A}M), \quad \Delta=\bar{u}v-u\bar{v}=2i\Im(\bar{u}v)[/math]The product becomes
[math]\left(\bar{A}M-A\bar{M}\right)\Delta=-4\Im(\bar{A}M)\Im(\bar{u}v)[/math]Now we use the identity[math]\Im\alpha\Im\beta=\frac{1}{2}\left(\Re(\alpha\bar{\beta})-\Re(\alpha\beta)\right)[/math] and we get
[math]\left(\bar{A}M-A\bar{M}\right)\Delta=-2\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)[/math]
This simplifies (4) into the expresstion
[math]\Delta\left(W(Z)-L(Z)\right)=-2\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)+4\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]
If we can show that
[math]\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)=2\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]We are done with the proof. Recall that [imath]u=H-P,\quad v=P-Q[/imath]. Now we expand [imath]u\bar{v}[/imath] and [imath]\bar{u}v[/imath].

[math]u\bar{v}=(H-P)(\bar{P}-\bar{Q}), \quad \bar{u}v=(\bar{H}-\bar{P})(P-Q)[/math]Left hand side is equal to
[math]\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)=\Re\left(\bar{A}M(H-P)(\bar{P}-\bar{Q})\right)-\Re\left(\bar{A}M(\bar{H}-\bar{P})(P-Q)\right)=\Re\left(\bar{A}M(H\bar{P}-\bar{H}P-(H\bar{Q}-\bar{H}Q)+(P\bar{Q}-\bar{P}Q))\right)[/math]Each bracket [imath]X\bar{Y}-\bar{X}Y[/imath] is of the type [imath]2i\Im(X\bar{Y})[/imath], hence
[math]LS=\Re\left(\bar{A}M\cdot2i \left(\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)\right)=\Re\left(2i\bar{A}M\right)\left(\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)=-2\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)[/math]
Then we would be done if we can show that
[math]-\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right) =\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]
 
Then we would be done if we can show that
[math]-\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right) =\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]
I noticed an error in my reasoning. The identity missed the fraction [imath]\frac{1}{2}[/imath]. It comes from working with the scaled triangle [imath]H' = 2H, P' = 2P, Q' = 2Q[/imath]: the perpendicular-bisector constants pick up a factor [imath]2[/imath], and when you translate them back to [imath](H,P,Q)[/imath], a global factor [imath]2[/imath] appears on the right side. Accounting for that should yields the correct equality:

[math]-\Im(\overline{A}M) \left[ \Im(H\overline{P}) -\Im(H\overline{Q}) +\Im(P\overline{Q}) \right] = \frac12 \left[ (|H|^2 - |P|^2)\,\Re\big(\overline{M-A}\,v\big) - (|P|^2 - |Q|^2)\,\Re\big(\overline{u}\,(M-A)\big) \right].[/math]While I don't yet see a path to prove this, it may require techniques beyond my current mathematical toolkit.
 
Continuation of the proof. First we show that

[math]D\bar{u}+\bar{D}u=(P+H)(\bar{H}-\bar{P})+(\bar{P}+\bar{H})(H-P)=\underbrace{(P\overline{H} + P\overline{H})}_{=2\Re(P\bar{H})}-\underbrace{(P\overline{P} + \overline{P}P)}_{=-2\left|P\right|^2}+\underbrace{(H\overline{H} + \overline{H}H)}_{=2\left|H\right|^2}-\underbrace{(H\overline{P} + \overline{H}P)}_{=2\Re(H\bar{P})}[/math]
I made an typing error here, I meant to write [math]D\bar{u}+\bar{D}u=(P+H)(\bar{H}-\bar{P})+(\bar{P}+\bar{H})(H-P)=\underbrace{(P\overline{H} + \bar{P}H)}_{=2\Re(P\bar{H})}-\underbrace{(P\overline{P} + \overline{P}P)}_{=-2\left|P\right|^2}+\underbrace{(H\overline{H} + \overline{H}H)}_{=2\left|H\right|^2}-\underbrace{(H\overline{P} + \overline{H}P)}_{=2\Re(H\bar{P})}[/math] Apologies for the typing error in the proof—hopefully the context still makes the intended reasoning clear. Please also note that the proof is incomplete, and other, more substantial parts may contain mistakes.
 
Last edited:
Continuation of the proof. First we show that

[math]D\bar{u}+\bar{D}u=(P+H)(\bar{H}-\bar{P})+(\bar{P}+\bar{H})(H-P)=\underbrace{(P\overline{H} + P\overline{H})}_{=2\Re(P\bar{H})}-\underbrace{(P\overline{P} + \overline{P}P)}_{=-2\left|P\right|^2}+\underbrace{(H\overline{H} + \overline{H}H)}_{=2\left|H\right|^2}-\underbrace{(H\overline{P} + \overline{H}P)}_{=2\Re(H\bar{P})}[/math]Hence [math]D\bar{u}+\bar{D}u=2(\left|H\right|^2-\left|P\right|^2)[/math]since [imath]\Re(P\bar{H})=\Re(H\bar{P})[/imath] and in a similar way we conclude
[math]E\bar{v}+\bar{E}v=2(\left|P\right|^2-\left|Q\right|^2)[/math]Now we simplify [imath]C_0[/imath]
[math]C_0=\bar{A}(M-A)-A(\bar{M}-\bar{A})= \bar{A}M-A\bar{M}[/math]. Thus
[math]W(Z)-L(Z)=(\bar{A}M-A\bar{M})+2s(\left|H\right|^2-\left|P\right|^2)+2t(\left|P\right|^2-\left|Q\right|^2) \quad (3) [/math]
Solving system (1) [imath]s \overline{u} + t \overline{v} = \overline{M} - \overline{A}, \quad s u + t v = -(M - A)[/imath] using Cramer's rule. Let [imath]\Delta=\bar{u}v-u\bar{v}=2i\Im(\bar{u}v)[/imath] then we obtain
[math]s=\frac{(\bar{M}-\bar{A})v+(M-A)\bar{v}}{\Delta} \quad t=\frac{-(M-A)\bar{u}-(\bar{M}-\bar{A})u}{\Delta} \quad (4)[/math]Substitution of (4) back into (3) gives
[math]\Delta\left(W(Z)-L(Z)\right)=\Delta(\bar{A}M-A\bar{M})+2(\left|H\right|^2-\left|P\right|^2)\left((\bar{M}-\bar{A})v+(M-A)\bar{v}\right)-2(\left|P\right|^2-\left|Q\right|^2)\left(\bar{u}(M-A)+u(\bar{M}-\bar{A} )\right)[/math]
Key observation: each bracket is [imath]2\Re(\cdot)[/imath] and we note that
[math]\left(\bar{M}-\bar{A}\right)v+(M-A)\bar{v}=2\Re\left(\overline{\left( M - A \right)}v\right)[/math][math]\left(M-A\right)\bar{u}+(\bar{M}-\bar{A})u=2\Re\left((M-A)\bar{u}\right)[/math][math]\bar{A}M-A\bar{M}=2i\Im(\bar{A}M), \quad \Delta=\bar{u}v-u\bar{v}=2i\Im(\bar{u}v)[/math]The product becomes
[math]\left(\bar{A}M-A\bar{M}\right)\Delta=-4\Im(\bar{A}M)\Im(\bar{u}v)[/math]Now we use the identity[math]\Im\alpha\Im\beta=\frac{1}{2}\left(\Re(\alpha\bar{\beta})-\Re(\alpha\beta)\right)[/math] and we get
[math]\left(\bar{A}M-A\bar{M}\right)\Delta=-2\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)[/math]
This simplifies (4) into the expresstion
[math]\Delta\left(W(Z)-L(Z)\right)=-2\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)+4\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]
If we can show that
[math]\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)=2\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]We are done with the proof. Recall that [imath]u=H-P,\quad v=P-Q[/imath]. Now we expand [imath]u\bar{v}[/imath] and [imath]\bar{u}v[/imath].

[math]u\bar{v}=(H-P)(\bar{P}-\bar{Q}), \quad \bar{u}v=(\bar{H}-\bar{P})(P-Q)[/math]Left hand side is equal to
[math]\left(\Re(\bar{A}M\cdot u\bar{v})-\Re(\bar{A}M\cdot \bar{u}v)\right)=\Re\left(\bar{A}M(H-P)(\bar{P}-\bar{Q})\right)-\Re\left(\bar{A}M(\bar{H}-\bar{P})(P-Q)\right)=\Re\left(\bar{A}M(H\bar{P}-\bar{H}P-(H\bar{Q}-\bar{H}Q)+(P\bar{Q}-\bar{P}Q))\right)[/math]Each bracket [imath]X\bar{Y}-\bar{X}Y[/imath] is of the type [imath]2i\Im(X\bar{Y})[/imath], hence
[math]LS=\Re\left(\bar{A}M\cdot2i \left(\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)\right)=\Re\left(2i\bar{A}M\right)\left(\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)=-2\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)[/math]
Then we would be done if we can show that
[math]-\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right) =\left((\left|H\right|^2-\left|P\right|^2)\Re(\overline{M - A}\cdot v)-(\left|P\right|^2-\left|Q\right|^2)\Re((M-A)\bar{u})\right)[/math]
Incomplete for now, but sharing what I have so far.

We can simplify the LHS again by compressing the brackets
[math]-\Im(\bar{A}M)\left((\Im(H\bar{P})-\Im(H\bar{Q})+\Im(P\bar{Q})\right)=-\Im(\bar{A}M)\left(\Im\left(H(\bar{P}-\bar{Q})+P\bar{Q}\right)\right)[/math]Since [imath]v=P-Q, \quad \bar{v}=\bar{P}-\bar{Q}[/imath] and [imath]Q=P-v[/imath] we have
[math]P\bar{Q}=P(\bar{P}-\bar{v})=\left|P\right|^2-P\bar{v}[/math]But [imath]\left|P\right|^2[/imath] is real so its imaginary part vanishes. Hence
[math]LHS=-\Im(\bar{A}M)\left(\Im\left(H(\bar{P}-\bar{Q})+P\bar{Q}\right)\right)=-\Im(\bar{A}M)\Im\left(H\bar{v}-P\bar{v}\right)=-\Im(\bar{A}M)\Im\left((H-P)\bar{v}\right)=-\Im(\bar{A}M)\Im\left(u\bar{v}\right)[/math][math]LHS=\Im(\bar{A}M)\Im\left(\bar{u}v\right)[/math][math][/math]Now we can use the identity [imath]2\Im\alpha\Im\beta=\Re(\alpha\bar{\beta})-\Re(\alpha\beta)[/imath] again. Choose [imath]\alpha=\bar{A}M[/imath] and [imath]\beta=\bar{u}v[/imath]. Then
[math]2LHS=2\Im(\bar{A}M)\Im(\bar{u}v)=\Re\left((\bar{A}M)u\bar{v}\right)-\Re\left((\bar{A}M)\bar{u}v\right)[/math]
 
I will now proceed to analyze the right-hand side of the equation. Although the problem is rooted in elementary algebra, this section presents unexpected challenges. I had anticipated a more straightforward approach; however, proving this part has turned out to be surprisingly difficult.

[math]RHS=\left[ (|H|^2 - |P|^2)\,\Re\big(\overline{M-A}\,v\big) - (|P|^2 - |Q|^2)\,\Re\big(\overline{u}\,(M-A)\big) \right][/math]Now use the identity [imath]\Re(z)=\frac{1}{2}\left(z+\bar{z}\right)[/imath] and note that we can express [imath]H[/imath] and [imath]Q[/imath] through [imath]u,v,P[/imath] using [imath]u=H-P, v=P-Q[/imath], then [imath]H=u+P[/imath] and [imath]Q=P-v[/imath]. Hence

[math]|H|^2 - |P|^2=\left(H\bar{H}-P\bar{P}\right)=(u+P)(\bar{u}+\bar{P})=u\bar{u}+u\bar{P}+P\bar{u}[/math] and
[math]|P|^2 - |Q|^2=\left(P\bar{P}-Q\bar{Q}\right)=P\bar{P}-(P-v)(\bar{P}-\bar{v})=P\bar{v}+v\bar{P}-v\bar{v}[/math][math]RHS=\frac{1}{2}\left((u\bar{u}+u\bar{P}+P\bar{u})\left(\overline{M-A}\cdot v+(M-A)\bar{v})\right) -\left( P\bar{v}+v\bar{P}-v\bar{v}\right)\left(\bar{u}(M-A)+u(\overline{M-A})\right) \right)[/math]
Define [math]X:=\overline{M-A}\cdot v+(M-A)\bar{v}, \quad Y:=\bar{u}(M-A)+u(\overline{M-A})[/math] and write [imath]X[/imath] and [imath]Y[/imath] in expanded conjugate form
[math]X=\bar{M}v-\bar{A}v+M\bar{v}-A\bar{v}[/math][math]Y=\bar{u}M-\bar{u}A+u\bar{M}-u\bar{A}[/math] then
[math]2RHS=\left(u\bar{u}X+u\bar{P}X+P\bar{u}X-P\bar{v}Y-v\bar{P}Y+v\bar{v}Y\right)[/math]Now multiply term by term
[math]u\bar{u}X=u\bar{u}\bar{M}v-u\bar{u}\bar{A}v+u\bar{u}M\bar{v}-u\bar{u}A\bar{v}[/math][math]u\bar{P}X=u\bar{P}\bar{M}v-u\bar{P}\bar{A}v+u\bar{P}M\bar{v}-u\bar{P}A\bar{v}[/math][math]P\bar{u}X=P\bar{u}\bar{M}v-P\bar{u}\bar{A}v+P\bar{u}M\bar{v}-P\bar{u}A\bar{v}[/math][math]-P\bar{v}Y=-P\bar{v}\bar{u}M+P\bar{v}\bar{u}A-P\bar{v}u\bar{M}+P\bar{v}u\bar{A}[/math][math]-v\bar{P}Y=-v\bar{P}\bar{u}M+v\bar{P}\bar{u}A-v\bar{P}uM+v\bar{P}u\bar{A}[/math][math]v\bar{v}Y=v\bar{v}\bar{u}M-v\bar{v}\bar{u}A+v\bar{v}u\bar{M}-v\bar{v}u\bar{A}[/math]The goal is to show that this sum equals
[math]\bar{A}Mu\bar{v}-\bar{A}M\bar{u}v-A\bar{M}u\bar{v}+A\bar{M}\bar{u}v=(\bar{A}M-A\bar{M})(u\bar{v}-\bar{u}v)=-2i\Im(\bar{A}M)\cdot -2i\Im(u\bar{v})=4\Im(\bar{A}M)\Im(\bar{u}v)[/math]This suggests grouping the 24 terms into four blocks of six, allowing us to identify potential cancellations within each block. However, as we proceed, the structure becomes increasingly intricate, and the proof grows more challenging—this line of reasoning will need to be continued with greater care.
 
The goal is to show that this sum equals
[math]\bar{A}Mu\bar{v}-\bar{A}M\bar{u}v-A\bar{M}u\bar{v}+A\bar{M}\bar{u}v=(\bar{A}M-A\bar{M})(u\bar{v}-\bar{u}v)=-2i\Im(\bar{A}M)\cdot -2i\Im(u\bar{v})=4\Im(\bar{A}M)\Im(\bar{u}v)[/math]
Correction.
[math]\bar{A}Mu\bar{v} - \bar{A}M\bar{u}v - A\bar{M}u\bar{v} + A\bar{M}\bar{u}v=(\bar{A}M - A\bar{M})(u\bar{v} - \bar{u}v)[/math]But [imath]z-\bar{z}=2i\Im(z)[/imath], so we obtain
[math]2i\Im(\bar{A}M)\cdot2i\Im(u\bar{v})=-4\Im(\bar{A}M)\Im(u\bar{v})=4\Im(\bar{A}M)\Im(\bar{u}v)[/math]
 
Top