thanks for reply,
meanwhile i "resolved some of my idiot braincells"
consider:
[MATH]\pi =\sum _{n=0}^{\infty }\:\frac{1}{^{16^n}}\left(\frac{4}{8n+1}-\frac{2}{8n+4}-\frac{1}{8n+5}-\frac{1}{8n+6}\right)[/MATH] (Simon Plouffe, spigot algorythm)
changing a bit the format:
[MATH]\pi =\sum _{n=0}^{\infty }\:\frac{1}{16^n}\left(2\alpha +\beta +\gamma \right)[/MATH][MATH]\alpha =\frac{3}{\left(8n+1\right)\left(8n+4\right)}[/MATH][MATH]\beta =\frac{4}{\left(8n+1\right)\left(8n+5\right)}[/MATH][MATH]\gamma =\frac{5}{\left(8n+1\right)\left(8n+6\right)}[/MATH]solving those equations, yields the digits of pi in hexadecimal format
so 3 functions (a smooth slope,except for 4 values of x) + a hexadecimal number system (16^0,16^-1,16^-2,...)=erratic number sequence (pi)
so what is special about 16 ? the only thing i can think of : 16 = 2^4 = 4^2 (far as i know, that is a unique property)
so what is special about those functions? ([MATH]\alpha,\beta,\gamma)[/MATH][MATH]2\alpha[/MATH] in original post)
general format: [MATH]f(x)=ax^2+bx+c[/MATH] (red curve, dark blue symmetry line)
plugged into: [MATH]f(x)=\frac{1}{x}[/MATH] (light blue curve, green symmetry line)

(correct me if i am wrong)
so for those general functions:
[MATH]f\left(x\right)=ax^2\rightarrow \:\int _{-\infty }^0\:x^2dx\:=\:\int _0^{+\infty }\:x^2dx[/MATH]this should yield x=0
[MATH]f\left(x\right)=\frac{1}{x}\rightarrow \:\int _0^x\:\frac{1}{x}dx-x\cdot \frac{1}{x}=\int _x^{-\infty }\:\frac{1}{x}dx[/MATH]this should yield x=1
in laymen's terms:

when a point (x,y) is moved on the symmetry line towards infinity, A remains equal to B
moving back to one of these functions, slightly modified:
[MATH]\alpha \:=\frac{3}{\left(8\left(x-\frac{1}{8}\right)+1\right)\left(8\left(x-\frac{1}{8}\right)+4\right)}[/MATH][MATH]\alpha\:=\frac{3}{8x\left(8x+3\right)}[/MATH][MATH]\beta\:=\frac{4}{8x\left(8x+4\right)}[/MATH][MATH]\gamma\:=\frac{5}{8x\left(8x+5\right)}[/MATH]now that the curve ([MATH]\alpha[/MATH]) is moved an amount to the right, the quadrant (+X+,+Y) is the one i am interested in. the quest remains: how to find the function for the curve (symmetry curve, so to speak), such that A remains equal to B ?

the point where x=y intersects with [MATH]\alpha\:=\frac{3}{8x\left(8x+3\right)}[/MATH](x must be >0)
[MATH]x\:=\frac{3}{8x\left(8x+3\right)}[/MATH]so how to resolve? (finding a definition for that partial function(from x derived from above to limit of indefinite)